A performance analysis of a cloud database on mobile devices
Article Sidebar
Open full text
Issue Vol. 29 (2023)
-
Performance analysis of web applications created in the Spring and Laravel frameworks
Jakub Suchanowski, Małgorzata Plechawska-Wójcik304-311
-
Comparative Analysis of Selected Game Engines
Bartłomiej Szabat, Małgorzata Plechawska-Wójcik312-316
-
Video game performance analysis on selected operating systems
Agata Wrześniewska, Maria Skublewska-Paszkowska317-324
-
Analysis of the ergonomics of interfaces of popular e-marketing tools
Weronika Studzińska325-332
-
Research on User Experience during Interactions with Mobile Applications for Diabetics
Przemysław Bajda, Rafał Baliński, Mariusz Dzieńkowski333-340
-
Performance analysis of React v. 18.1.0 and Angular v. 11.0.2 development frameworks
Analiza wydajności szkieletów programistycznych React v. 18.1.0 i Angular v. 11.0.2Albert Poniedziałek, Beata Pańczyk341-345 -
A comparative analysis of the Flutter and React Native frameworks
Mateusz Markowski, Jakub Smołka346-351
-
Performance analysis of REST API technologies using Spring and Express.js examples
Maciej Wicha, Beata Pańczyk352-359
-
A performance analysis of a cloud database on mobile devices
Sylwester Kot, Jakub Smołka360-365
-
Face Recognition using Deep Learning and TensorFlow framework
Makrem Beldi366-373
-
Comparison of tools for creating and conducting automated tests
Grzegorz Wojciech Bielesza, Mariusz Dzieńkowski374-382
-
Comparison of application container orchestration platforms
Adam Pankowski, Paweł Powroźnik383-390
-
A study of the user experience while working with mobile applications cooperating with sports bands
Szymon Czopek, Mariusz Dzieńkowski391-398
-
Comparison of Machine Learning Algorithms on Classification of Covid-19 Cough Sounds Using MFCC Extraction
Mohammad Reza Faisal, Muhammad Thoriq Hidayat, Dwi Kartini, Fatma Indriani, Irwan Budiman, Triando Hamonangan Saragih399-404
-
Comparative analysis of package managers Flatpak and Snap used for open-source software distribution
Grzegorz Jan Cichocki, Sławomir Wojciech Przyłucki405-412
-
Analysis of the impact of using containerization techniques on application performance in Python
Kacper Chołody, Sławomir Przyłucki413-420
Main Article Content
DOI
Authors
Abstract
The article presents a performance analysis of Firebase cloud database. Two services, namely Realtime Database and Cloud Firestore, are examined, and their query speed are compared to those of the local SQLite database. Basic CRUD operations were examined, taking into account the number of records in the database, the size of individual records and the complexity of the database structure. Upon completion of the research, it was concluded that Realtime Database outperforms Cloud Firestore and cloud databases are slower than the local database when it comes to operations on a single record. However, when working with a larger volume of data, cloud database can achieve better results than SQLite. The accuracy of the outcome is also influenced by the stability of the network connection and the distance from the cloud server.
Keywords:
References
W. Al Shehri, Cloud Database Database as a Service, International Journal of Database Management Systems 5(2) (2013) 1-12. DOI: https://doi.org/10.5121/ijdms.2013.5201
D. Hammes, H. Medero, H. Mitchell, Comparison of NoSQL and SQL Databases in the Cloud, SAIS 2014 Proceedings (2014) 12-20.
Y. Li, S. Manoharan, A performance comparison of SQL and NoSQL databases, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM, Victoria, BC, Canada, August 27-August 29, 2013, IEEE (2013) 15-19. DOI: https://doi.org/10.1109/PACRIM.2013.6625441
M. Ohyver, J. V. Moniaga, I. Sungkawa, B. E. Subagyo, I. A. Chandra, The Comparison Firebase Realtime Database and MySQL Database Performance using Wilcoxon Signed-Rank Test, Procedia Computer Science 157 (2019) 396-405. DOI: https://doi.org/10.1016/j.procs.2019.08.231
C. H. Lee, Z. W. Shih, A Comparison of NoSQL and SQL Databases over the Hadoop and Spark Cloud Platforms using Machine Learning Algorithms, 2018 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW, Taichung, Taiwan, May 19-May 21, 2018, IEEE (2018) 1-2. DOI: https://doi.org/10.1109/ICCE-China.2018.8448621
A. T. KABAKUŞ, A Performance Comparison of SQLite and Firebase Databases from A Practical Perspective, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7(1) (2019) 314-325. DOI: https://doi.org/10.29130/dubited.441672
D. Inupakutika, G. Rodriguez, D. Akopian, P. Lama, P. Chalela, A. G. Ramirez, On the Performance of Cloud-Based mHealth Applications: A Methodology on Measuring Service Response Time and a Case Study, IEEE Access 10 (2022) 53208-53224. DOI: https://doi.org/10.1109/ACCESS.2022.3174855
M. F. Younis, Z. S. Alwan, Monitoring the performance of cloud real-time databases: A firebase case study, 2023 Al-Sadiq International Conference on Communication and Information Technology, AICCIT, Al-Muthana, Iraq, July 4-July 6, 2023, IEEE (2023) 240-245. DOI: https://doi.org/10.1109/AICCIT57614.2023.10217953
Usage and limits | Firestore | Firebase, https://firebase.google.com/docs/firestore/quotas?hl=en [15.06.2023]
Realtime Database Limits | Firebase Realtime Database, https://firebase.google.com/docs/database/usage/limits?hl=en [15.06.2023]
Article Details
Abstract views: 608
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
