Face Recognition using Deep Learning and TensorFlow framework
Article Sidebar
Open full text
Issue Vol. 29 (2023)
-
Performance analysis of web applications created in the Spring and Laravel frameworks
Jakub Suchanowski, Małgorzata Plechawska-Wójcik304-311
-
Comparative Analysis of Selected Game Engines
Bartłomiej Szabat, Małgorzata Plechawska-Wójcik312-316
-
Video game performance analysis on selected operating systems
Agata Wrześniewska, Maria Skublewska-Paszkowska317-324
-
Analysis of the ergonomics of interfaces of popular e-marketing tools
Weronika Studzińska325-332
-
Research on User Experience during Interactions with Mobile Applications for Diabetics
Przemysław Bajda, Rafał Baliński, Mariusz Dzieńkowski333-340
-
Performance analysis of React v. 18.1.0 and Angular v. 11.0.2 development frameworks
Analiza wydajności szkieletów programistycznych React v. 18.1.0 i Angular v. 11.0.2Albert Poniedziałek, Beata Pańczyk341-345 -
A comparative analysis of the Flutter and React Native frameworks
Mateusz Markowski, Jakub Smołka346-351
-
Performance analysis of REST API technologies using Spring and Express.js examples
Maciej Wicha, Beata Pańczyk352-359
-
A performance analysis of a cloud database on mobile devices
Sylwester Kot, Jakub Smołka360-365
-
Face Recognition using Deep Learning and TensorFlow framework
Makrem Beldi366-373
-
Comparison of tools for creating and conducting automated tests
Grzegorz Wojciech Bielesza, Mariusz Dzieńkowski374-382
-
Comparison of application container orchestration platforms
Adam Pankowski, Paweł Powroźnik383-390
-
A study of the user experience while working with mobile applications cooperating with sports bands
Szymon Czopek, Mariusz Dzieńkowski391-398
-
Comparison of Machine Learning Algorithms on Classification of Covid-19 Cough Sounds Using MFCC Extraction
Mohammad Reza Faisal, Muhammad Thoriq Hidayat, Dwi Kartini, Fatma Indriani, Irwan Budiman, Triando Hamonangan Saragih399-404
-
Comparative analysis of package managers Flatpak and Snap used for open-source software distribution
Grzegorz Jan Cichocki, Sławomir Wojciech Przyłucki405-412
-
Analysis of the impact of using containerization techniques on application performance in Python
Kacper Chołody, Sławomir Przyłucki413-420
Main Article Content
DOI
Authors
Abstract
Detecting human faces and recognizing faces and facial expressions have always been an area of interest for different applications such as games, utilities and even security. With the advancement of machine learning, the techniques of detection and recognition have become more accurate and precise than ever before. However, machine learning remains a relatively complex field that could feel intimidating or inaccessible to many of us. Luckily, in the last couple of years, several organizations and open-source communities have been developing tools and libraries that help abstract the complex mathematical algorithms in order to encourage developers to easily create learning models and train them using any programming languages.
As part of this project, we will create a Face Detection framework in Python built on top of the work of several open-source projects and models with the hope to reduce the entry barrier for developers and to encourage them to focus more on developing innovative applications that make use of face detection and recognition.
Keywords:
References
R. Rajeev et al. A fast and accurate system for face detection, identification, and verification. IEEE Transactions on Biometrics, Behavior, and Identity Science 1(2) (2019) 82-96. DOI: https://doi.org/10.1109/TBIOM.2019.2908436
H. Wang, J. Hu, W. Deng, Face feature extraction: a complete review, IEEE Access 6 (2017) 6001-6039. DOI: https://doi.org/10.1109/ACCESS.2017.2784842
M. Sharif, M.Y Javed, Javed, M. Sajjad, Face recognition based on facial features. Research Journal of Applied Sciences, Engineering and Technology 4(17) (2012) 2879-2886.
L. Shen, L. Bai, A review on Gabor wavelets for face recognition, Pattern analysis and applications 9 (2006) 273-292.
S. Anwarul, D. Susheela, A comprehensive review on face recognition methods and factors affecting facial recognition accuracy, Proceedings of ICRIC 2019: Recent Innovations in Computing (2020) 495-514. DOI: https://doi.org/10.1007/978-3-030-29407-6_36
M. Owayjan, A. Dergham, G. Haber, N. Fakih, A. Hamoush, E. Abdo, New trends in networking, computing, E-learning, systems sciences, and engineering, Springer International Publishing, 2015.
J.H. Li, Cyber security meets artificial intelligence: a survey, Frontiers of Information Technology & Electronic Engineering 19(12) (2018) 1462-1474. DOI: https://doi.org/10.1631/FITEE.1800573
B. Gupta, D.P. Agrawal, S. Yamaguchi, Handbook of research on modern cryptographic solutions for computer and cyber security, IGI global, 2016. DOI: https://doi.org/10.4018/978-1-5225-0105-3
P.M. Kumar, U. Gandhi, R. Varatharajan, G. Manogaran, T. Vadivel, Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things, Cluster Computing 22 (2019) 7733-7744. DOI: https://doi.org/10.1007/s10586-017-1323-4
M.S. Obaidat, I. Traore, I. Woungang, Biometric-based physical and cybersecurity systems. Cham: Springer International Publishing, 2019. DOI: https://doi.org/10.1007/978-3-319-98734-7
Z. Ma et al., Lightweight privacy-preserving ensemble classification for face recognition, IEEE Internet of Things Journal 6(3) (2019) 5778-5790. DOI: https://doi.org/10.1109/JIOT.2019.2905555
Z. Zhang et al., Artificial intelligence in cyber security: research advances, challenges, and opportunities, Artificial Intelligence Review (2022) 1-25.
R. Chellappa, P. Sinha, P.J. Phillips, Face recognition by computers and humans, Computer 43(2) (2010) 46-55. DOI: https://doi.org/10.1109/MC.2010.37
M. Sahani et al., Web-based online embedded door access control and home security system based on face recognition, 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. IEEE, 2015. DOI: https://doi.org/10.1109/ICCPCT.2015.7159473
M. Owayjan et al., Face recognition security system. New trends in networking, computing, E-learning, systems sciences, and engineering, Springer International Publishing, 2015. DOI: https://doi.org/10.1007/978-3-319-06764-3_42
S.A. Radzi et al., IoT based facial recognition door access control home security system using raspberry pi, International Journal of Power Electronics and Drive Systems 11(1) (2020) 417-424. DOI: https://doi.org/10.11591/ijpeds.v11.i1.pp417-424
S. Trivedi, P. Nikhil, Virtual Employee Monitoring: A Review on Tools, Opportunities, Challenges, and Decision Factors, Empirical Quests for Management Essences 1(1) (2021) 86-99.
H. Ai, X, Cheng. Research on embedded access control security system and face recognition system, Measurement 123 (2018) 309-322. DOI: https://doi.org/10.1016/j.measurement.2018.04.005
L. Sirovich, M. Kirby, Low-dimensional procedure for the characterization of human faces, Josa a 4(3) (1987) 519-524. DOI: https://doi.org/10.1364/JOSAA.4.000519
A. K. Jain, R. C. Dubes, Algorithms for Clustering Data. New Jersey: Prentice-Hall, 1988.
K. Fukunaga, Introduction to Statistical Pattern Recognition, second ed. Boston, MA: Academic Press, 1990. DOI: https://doi.org/10.1016/B978-0-08-047865-4.50007-7
M. Ringnér, What is principal component analysis?. Nature biotechnology 26(3) (2008) 303-304. DOI: https://doi.org/10.1038/nbt0308-303
J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, Face recognition using LDA-based algorithms, IEEE Transactions on Neural networks 14(1) (2003) 195-200. DOI: https://doi.org/10.1109/TNN.2002.806647
J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, Regularized D-LDA for face recognition. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).Vol. 3. IEEE, 2003.
G.L. Marcialis, R. Fabio, Fusion of LDA and PCA for Face Recognition. Department of Electrical and Electronic Engineering, University of Cagliari, Piazza díArmi (2002). DOI: https://doi.org/10.1007/3-540-47917-1_4
A. Bansal, M. Kapil, A. Sahil, Face recognition using PCA and LDA algorithm. 2012 second international conference on Advanced Computing & Communication Technologies. IEEE, 2012. DOI: https://doi.org/10.1109/ACCT.2012.52
T. Ojala, P. Matti, H. David, A comparative study of texture measures with classification based on featured distributions, Pattern recognition 29(1) (1996) 51-59. DOI: https://doi.org/10.1016/0031-3203(95)00067-4
T. Ahonen, M Pietikäinen, Soft histograms for local binary patterns, Proceedings of the Finnish signal processing symposium, FINSIG 5(9) 2007.
R. Hadsell, C. Sumit, L. Yann, Dimensionality reduction by learning an invariant mapping, 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06) 2. IEEE, 2006.
F. Schroff, K. Dmitry, P. James, Facenet: A unified embedding for face recognition and clustering, Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. DOI: https://doi.org/10.1109/CVPR.2015.7298682
R. E. Saragih, Q. H. To, A survey of face recognition based on convolutional neural network, Indonesian Journal of Information Systems 4(2) (2022). DOI: https://doi.org/10.24002/ijis.v4i2.5439
S. Almabdy, E. Lamiaa, Deep convolutional neural network-based approaches for face recognition, Applied Sciences 9(20) (2019) 4397. DOI: https://doi.org/10.3390/app9204397
R. Chauhan, K.K. Ghanshala, R.C. Joshi, Convolutional neural network (CNN) for image detection and recognition, 2018 first international conference on secure cyber computing and communication (ICSCCC). IEEE, 2018. DOI: https://doi.org/10.1109/ICSCCC.2018.8703316
X. Zhou, et al., Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems, IEEE Transactions on Industrial Informatics 17.8 (2020) 5790-5798. DOI: https://doi.org/10.1109/TII.2020.3047675
S. Bell, K. Bala, Learning visual similarity for product design with convolutional neural networks, ACM transactions on graphics (TOG) 34(4) (2015) 1-10. DOI: https://doi.org/10.1145/2766959
D. Chicco, Siamese neural networks: An overview, Artificial neural networks (2021) 73-94. DOI: https://doi.org/10.1007/978-1-0716-0826-5_3
Y. Feng, et al., Triplet distillation for deep face recognition, 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. DOI: https://doi.org/10.1109/ICIP40778.2020.9190651
R. Jafri, H. R. Arabnia, A survey of face recognition techniques, Journal of information processing systems 5(2) (2009) 41-68. DOI: https://doi.org/10.3745/JIPS.2009.5.2.041
R. Cabeza, et al., The prototype effect in face recognition: Extension and limits, Memory & cognition 27 (1999) 139-151. DOI: https://doi.org/10.3758/BF03201220
J. Galbally, M. Sébastien, F. Julian, Biometric antispoofing methods: A survey in face recognition, IEEE Access 2 (2014) 1530-1552. DOI: https://doi.org/10.1109/ACCESS.2014.2381273
H. J. Hsu, K. T. Chen, Face recognition on drones: Issues and limitations, Proceedings of the first workshop on micro aerial vehicle networks, systems, and applications for civilian use. 2015. DOI: https://doi.org/10.1145/2750675.2750679
Y. Dong, et al., Efficient decision-based black-box adversarial attacks on face recognition, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. DOI: https://doi.org/10.1109/CVPR.2019.00790
Y. Zhong, D. Weihong, Towards transferable adversarial attack against deep face recognition, IEEE Transactions on Information Forensics and Security 16 (2020) 1452-1466. DOI: https://doi.org/10.1109/TIFS.2020.3036801
N. Mani, M. Melody, T.S. Moh, Defending deep learning models against adversarial attacks, International Journal of Software Science and Computational Intelligence (IJSSCI) 13(1) (2021) 72-89. DOI: https://doi.org/10.4018/IJSSCI.2021010105
J. Gozdur, B. Wiśniewski, P. Kopniak, Comparison of the effectiveness of selected face recognition algorithms for poor quality photos, Journal of Computer Sciences Institute 10 (2019) 67-70. DOI: https://doi.org/10.35784/jcsi.210
A. Cellerino, B. Davide, S. Ferdinando, Sex differences in face gender recognition in humans, Brain research bulletin 63(6) (2004) 443-449. DOI: https://doi.org/10.1016/j.brainresbull.2004.03.010
T. Baltrusaitis, P. Robinson, L. P. Morency, Constrained local neural fields for robust facial landmark detection in the wild, Proceedings of the IEEE international conference on computer vision workshops. 2013. DOI: https://doi.org/10.1109/ICCVW.2013.54
S. W. Arachchilage, E. Izquierdo, A framework for real-time face-recognition, 2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019. DOI: https://doi.org/10.1109/VCIP47243.2019.8965805
T. Tuytelaars, K. Mikolajczyk, Local invariant feature detectors: a survey, Foundations and trends in computer graphics and vision 3(3) (2008) 177-280. DOI: https://doi.org/10.1561/0600000017
L. Shen, L. Bai, A review on Gabor wavelets for face recognition, Pattern analysis and applications 9 (2006) 273-292. DOI: https://doi.org/10.1007/s10044-006-0033-y
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Vol. 1. IEEE, 2005.
K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE transactions on pattern analysis and machine intelligence 27(10) (2005) 1615-1630. DOI: https://doi.org/10.1109/TPAMI.2005.188
D. G. Lowe, Distinctive image features from scale-invariant keypoints, International journal of computer vision 60 (2004) 91-110. DOI: https://doi.org/10.1023/B:VISI.0000029664.99615.94
A. Naeem, et al., Malignant melanoma classification using deep learning: datasets, performance measurements, challenges and opportunities, IEEE access 8 (2020) 110575-110597. DOI: https://doi.org/10.1109/ACCESS.2020.3001507
R. Sujatha, et al., Performance of deep learning vs machine learning in plant leaf disease detection, Microprocessors and Microsystems 80 (2021) 103615. DOI: https://doi.org/10.1016/j.micpro.2020.103615
E. Hoffer, N. Ailon, Deep metric learning using triplet network. Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3. Springer International Publishing, 2015.
P. Parveen, B. Thuraisingham, Face recognition using multiple classifiers, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06). IEEE, 2006. DOI: https://doi.org/10.1109/ICTAI.2006.59
J.R. Beveridge, et al., A nonparametric statistical comparison of principal component and linear discriminant subspaces for face recognition, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. IEEE, 2001.
P. Kamencay, et al., A new method for face recognition using convolutional neural network, Advances in Electrical and Electronic Engineering 15(4) (2017) 663-672. DOI: https://doi.org/10.15598/aeee.v15i4.2389
M. Abadi, TensorFlow: learning functions at scale, Proceedings of the 21st ACM SIGPLAN international conference on functional programming. 2016. DOI: https://doi.org/10.1145/2951913.2976746
J. V. Dillon, et al., Tensorflow distributions, arXiv preprint arXiv:1711.10604 (2017).
B. Pang, E. Nijkamp, Y N Wu, Deep learning with tensorflow: A review, Journal of Educational and Behavioral Statistics 45(2) (2020) 227-248. DOI: https://doi.org/10.3102/1076998619872761
F.S Samaria, A.C Harter, Parameterisation of a stochastic model for human face identification, In Proceedings of 1994 IEEE workshop on applications of computer vision. IEEE, (1994) 138-142.
Article Details
Abstract views: 416
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
