Comparison of application container orchestration platforms
Article Sidebar
Open full text
Issue Vol. 29 (2023)
-
Performance analysis of web applications created in the Spring and Laravel frameworks
Jakub Suchanowski, Małgorzata Plechawska-Wójcik304-311
-
Comparative Analysis of Selected Game Engines
Bartłomiej Szabat, Małgorzata Plechawska-Wójcik312-316
-
Video game performance analysis on selected operating systems
Agata Wrześniewska, Maria Skublewska-Paszkowska317-324
-
Analysis of the ergonomics of interfaces of popular e-marketing tools
Weronika Studzińska325-332
-
Research on User Experience during Interactions with Mobile Applications for Diabetics
Przemysław Bajda, Rafał Baliński, Mariusz Dzieńkowski333-340
-
Performance analysis of React v. 18.1.0 and Angular v. 11.0.2 development frameworks
Analiza wydajności szkieletów programistycznych React v. 18.1.0 i Angular v. 11.0.2Albert Poniedziałek, Beata Pańczyk341-345 -
A comparative analysis of the Flutter and React Native frameworks
Mateusz Markowski, Jakub Smołka346-351
-
Performance analysis of REST API technologies using Spring and Express.js examples
Maciej Wicha, Beata Pańczyk352-359
-
A performance analysis of a cloud database on mobile devices
Sylwester Kot, Jakub Smołka360-365
-
Face Recognition using Deep Learning and TensorFlow framework
Makrem Beldi366-373
-
Comparison of tools for creating and conducting automated tests
Grzegorz Wojciech Bielesza, Mariusz Dzieńkowski374-382
-
Comparison of application container orchestration platforms
Adam Pankowski, Paweł Powroźnik383-390
-
A study of the user experience while working with mobile applications cooperating with sports bands
Szymon Czopek, Mariusz Dzieńkowski391-398
-
Comparison of Machine Learning Algorithms on Classification of Covid-19 Cough Sounds Using MFCC Extraction
Mohammad Reza Faisal, Muhammad Thoriq Hidayat, Dwi Kartini, Fatma Indriani, Irwan Budiman, Triando Hamonangan Saragih399-404
-
Comparative analysis of package managers Flatpak and Snap used for open-source software distribution
Grzegorz Jan Cichocki, Sławomir Wojciech Przyłucki405-412
-
Analysis of the impact of using containerization techniques on application performance in Python
Kacper Chołody, Sławomir Przyłucki413-420
Main Article Content
DOI
Authors
Abstract
This article presents a comparative analysis of three well-known container orchestration platforms: Docker Swarm, Kubernetes and Apache Mesos, focusing on the deployment of a test application and measuring parameters such as deployment time, memory, CPU and disk utilization, application response time and the time to restore a replica of the application using an auto-recovery mechanism. The aim of the research is to verify the performance and efficiency of the analyzed platforms, facilitating informed decisions while choosing an orchestrator for containerized applications. Two research hypotheses have been stated. The first one assumes that the time required to launch an application using the Docker Swarm tool is the shortest among the analyzed platforms. The second hypothesis is that Kubernetes provides the most efficient results in terms of load scheduling and application scaling. The analysis performed on the Jenkins application showed the superiority of the Docker Swarm platform over the other studied tools in terms of performance.
Keywords:
References
Mikrousługi a architektura monolityczna, https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith, [07.06.2023].
J. Stubbs, W. Moreira, R. Dooley, Distributed systems of microservices using Docker and Serfnode, 7th International Workshop on Science Gateways (2015) 34–39, https://doi.org/10.1109/iwsg.2015.16. DOI: https://doi.org/10.1109/IWSG.2015.16
I. M. A. Jawarneh et al., Container Orchestration Engines: A Thorough Functional and Performance Comparison, ICC 2019 - 2019 IEEE International Conference on Communications (2019) 1-6, https://doi.org/10.1109/ICC.2019.8762053. DOI: https://doi.org/10.1109/ICC.2019.8762053
A. Malviya, R. K. Dwivedi, A Comparative Analysis of Container Orchestration Tools in Cloud Computing, 9th International Conference on Computing for Sustainable Global Development (2022) 698-703, https://doi.org/10.23919/INDIACom54597.2022.9763171. DOI: https://doi.org/10.23919/INDIACom54597.2022.9763171
Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, R. Sinnott, A Performance Comparison of Cloud-Based Container Orchestration Tools, IEEE International Conference on Big Knowledge (2019) 191-198, https://doi.org/10.1109/ICBK.2019.00033. DOI: https://doi.org/10.1109/ICBK.2019.00033
A. Shemyakinskaya, I. Nikiforov, Disk Space Management Automation with CSI and Kubernetes. Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems 447 (2023) 171-179, https://doi.org/10.1007/978-981-19-1607-6_15. DOI: https://doi.org/10.1007/978-981-19-1607-6_15
C. Cérin, T. Menouer, W. Saad, W. B. Abdallah, A New Docker Swarm Scheduling Strategy, IEEE 7th International Symposium on Cloud and Service Computing (2017) 112-117, https://doi.org/10.1109/SC2.2017.24. DOI: https://doi.org/10.1109/SC2.2017.24
P. Saha, A. Beltre, M. Govindaraju, Exploring the Fairness and Resource Distribution in an Apache Mesos Environment, IEEE 11th International Conference on Cloud Computing (2018) 434-441, https://doi.org/10.1109/CLOUD.2018.00061. DOI: https://doi.org/10.1109/CLOUD.2018.00061
D. K. Kang, G. B. Choi, S. H. Kim, I. S. Hwang, C. H. Youn, Workload-aware resource management for energy efficient heterogeneous Docker containers, IEEE Region 10 Conference (2016) 2428-2431, https://doi.org/10.1109/TENCON.2016.7848467. DOI: https://doi.org/10.1109/TENCON.2016.7848467
Porównanie Docker Swarm i Kubernetes, https://circleci.com/blog/docker-swarm-vs-kubernetes/, [07.06.2023].
Ankieta CNCF 2022, https://www.cncf.io/reports/cncf-annual-survey-2022/, [07.06.2023].
Porównanie Kubernetes, Mesos oraz Docker Swarm, https://www.sumologic.com/insight/kubernetes-vs-mesos-vs-swarm/, [07.06.2023].
Dokumentacja Apache Mesos, https://mesos.apache.org/documentation/lates, [07.06.2023].
Dokumentacja Apache JMeter, https://jmeter.apache.org, [07.06.2023].
Article Details
Abstract views: 640
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
