Analysis of the effectiveness of text input methods using the mobile network communicator
Rafał Kacprzak
rafal1254@gmail.comInstitute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland (Poland)
Piotr Kaniewski
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland (Poland)
Maria Skublewska-Paszkowska
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland (Poland)
Abstract
The topics being considered in the study is to compare the text input methods in the mobile network communicator. Analyzed the
speed of text entry as well as the number of mistakes made by users via the tested methods. Compared the methods of entering text using the
QWERTY keyboard, Swype Technology, Handwriting and voice commands. The study was conducted among the two groups of respondents,
by age of the participants. There have been characteristics of the selected text input methods in the mobile network communicator. On the needs
of the article was developed mobile communicator.
Keywords:
analysis of text input on a mobile device; QWERTY; Swype method; voice input text; handwritten text entryReferences
[1] Urodziny pierwszego smartfona, IBM Simon – 20 lat minęło jak jeden dzień, http://android.com.pl/news/29895-urodzinypierwszego-smartfona-bm-simon-20-lat-minelo-jak-jedendzien [Dostęp: 28.11.2016]
[2] Schafer, E. D.: Mill Patents the Typewriter. Salem Pres Encyclopedia, January, 2015.
[3] Kaufman J.: The First 20 Hours: How to Learn Anything.Fast!. Wordly Wisdom Ventures LLC. 2013.
[4] Smith A.: Smartphone Text Input Method Performance, Usability, and Preference with Younger and Older Adults, 2013.
[5] Zhai S. & Kristensson P. O.: Shorthand writing on stylus keyboard. CHI '03 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. s.97-104.
[6] Kacalak W., Majewski M.: Wybrane problemy efektywnego rozpoznawania pisma odręcznego.Pomiary Automatyka Kontrola. PAK vol. 57, nr 5/2011 s. 480
[7] Davis H., Biddulph R., Balashek S.: Automatic recognition of spoken digits. Journal of the Acoustical Society of America, no. 24(6). 1952. s.637–642.
[8] Nielsen J.: Budiu R.: Funkcjonalność aplikacji mobilnych. Nowoczesne standardy UX i UI. Helion 2013. s 167.
[9] Benzeghiba M., De Mori R., Deroo O., Dupont S., Erbes T., Jouvet D., Fissore L., Laface P., Mertins A., Ris C., Rose R.,
Tyagi V., and Wellekens C.: Automatic speech recognition and speech variability: a review. Speech Communication, 49, 763- 786
[10] Cox A. L., Cairns P. A.: Walton A. & Lee S.: Tlk or txt? Using voice input for SMS composition. Personal and Ubiquitous Computing. 2008. s.567-588.
[11] Powerful Speech Recognition, https://cloud.google.com/speech [Dostęp :28.11.2016]
[12] Kacalak W., Majewski M.: Wybrane problemy efektywnego
rozpoznawania pisma odręcznego.Pomiary Automatyka
Kontrola. PAK vol. 57, nr 5/2011 s. 480
[13] Stonemetz J., Ruskin K.: Anesthesia Informatics, Springer,
[2] Schafer, E. D.: Mill Patents the Typewriter. Salem Pres Encyclopedia, January, 2015.
[3] Kaufman J.: The First 20 Hours: How to Learn Anything.Fast!. Wordly Wisdom Ventures LLC. 2013.
[4] Smith A.: Smartphone Text Input Method Performance, Usability, and Preference with Younger and Older Adults, 2013.
[5] Zhai S. & Kristensson P. O.: Shorthand writing on stylus keyboard. CHI '03 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. s.97-104.
[6] Kacalak W., Majewski M.: Wybrane problemy efektywnego rozpoznawania pisma odręcznego.Pomiary Automatyka Kontrola. PAK vol. 57, nr 5/2011 s. 480
[7] Davis H., Biddulph R., Balashek S.: Automatic recognition of spoken digits. Journal of the Acoustical Society of America, no. 24(6). 1952. s.637–642.
[8] Nielsen J.: Budiu R.: Funkcjonalność aplikacji mobilnych. Nowoczesne standardy UX i UI. Helion 2013. s 167.
[9] Benzeghiba M., De Mori R., Deroo O., Dupont S., Erbes T., Jouvet D., Fissore L., Laface P., Mertins A., Ris C., Rose R.,
Tyagi V., and Wellekens C.: Automatic speech recognition and speech variability: a review. Speech Communication, 49, 763- 786
[10] Cox A. L., Cairns P. A.: Walton A. & Lee S.: Tlk or txt? Using voice input for SMS composition. Personal and Ubiquitous Computing. 2008. s.567-588.
[11] Powerful Speech Recognition, https://cloud.google.com/speech [Dostęp :28.11.2016]
[12] Kacalak W., Majewski M.: Wybrane problemy efektywnego
rozpoznawania pisma odręcznego.Pomiary Automatyka
Kontrola. PAK vol. 57, nr 5/2011 s. 480
[13] Stonemetz J., Ruskin K.: Anesthesia Informatics, Springer,
Kacprzak, R., Kaniewski, . P., & Skublewska-Paszkowska, M. (2017). Analysis of the effectiveness of text input methods using the mobile network communicator. Journal of Computer Sciences Institute, 3, 11–17. https://doi.org/10.35784/jcsi.508
Authors
Rafał Kacprzakrafal1254@gmail.com
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland Poland
Authors
Piotr KaniewskiInstitute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland Poland
Authors
Maria Skublewska-PaszkowskaInstitute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland Poland
Statistics
Abstract views: 213PDF downloads: 79
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.