A comparative analysis of transitions generated using the Unity game development platform
Article Sidebar
Open full text
Issue Vol. 30 (2024)
-
Analysis of data processing efficiency with use of Apache Hive and Apache Pig in Hadoop environment
Mikołaj Skrzypczyński, Piotr Muryjas1-8
-
Analysis of the application for the DFD authoring usage possibilities
Marek Pieczykolan, Marcin Badurowicz9-13
-
Comparative analysis of query execution speed using Entity Framework for selected database engines
Krzysztof Winiarczyk, Rafał Stęgierski14-20
-
C++ and Kotlin performance on Android – a comparative analysis
Grzegorz Zaręba, Maciej Zarębski, Jakub Smołka21-25
-
Comparative analysis of Node.js frameworks
Bartłomiej Zima, Marcin Barszcz26-30
-
User experience analysis in virtual museums
Aleksandra Kobylska, Mariusz Dzieńkowski31-38
-
Analysis of user experience during interaction with automotive repair workshop websites
Radosław Danielkiewicz, Mariusz Dzieńkowski39-46
-
A comparative analysis of transitions generated using the Unity game development platform
Marek Tabiszewski47-52
-
Comparative analysis of the performance of Unity and Unreal Engine game engines in 3D games
Kamil Abramowicz, Przemysław Borczuk53-60
-
Classification Performance Comparison of BERT and IndoBERT on SelfReport of COVID-19 Status on Social Media
Irwan Budiman, Mohammad Reza Faisal, Astina Faridhah, Andi Farmadi, Muhammad Itqan Mazdadi, Triando Hamonangan Saragih, Friska Abadi61-67
Main Article Content
DOI
Authors
marek.tabiszewski@pollub.edu.pl
Abstract
This paper conducts a comparative analysis of transitions generated using the Unity engine. It selects fifteen animations featuring a humanoid character, introduces breaks in marker trajectories, and fills them with transitions generated by the game engine's animator. These transitions are then compared with the unmodified original character animation. The study compares animations by calculating the average deviation in bone rotation and position between the original and generated motion throughout the animation. The results show that the Unity engine excels in generating transitions for slow animations involving the lower body limbs, with the largest errors occurring in the bones at the extremities of the limbs.
Keywords:
References
M. Masuch, N. Röber, Game graphics beyond realism: Then, now and tomorrow, Level UP: digital games research conference (DIGRA), Faculty of Arts, University of Utrecht, 2004, http://www.digra.org/wp-content/uploads/digital-library/05150.48223.pdf.
J.K. Hodgins, J.F. O'Brien, J. Tumblin, Perception of human motion with different geometric models, IEEE Transactions on Visualization and Computer Graphics 4 (4) (1998) 307-316, https://doi.org/10.1109/2945.765325. DOI: https://doi.org/10.1109/2945.765325
M. Oesker, H. Hecht, B. Jung, Psychological Evidence for Unconscious Processing of Detail in Real‐time Animation of Multiple Characters, The Journal of Visualization and Computer Animation 11 (2) (2000) 105-112, https://doi.org/10.1002/1099-1778(200005)11:2<105::AID-VIS222>3.0.CO;2-Q. DOI: https://doi.org/10.1002/1099-1778(200005)11:2<105::AID-VIS222>3.0.CO;2-Q
J. Lee, J. Chai, P.S. Reitsma, J.K. Hodgins, N.S. Pollard, Interactive control of avatars animated with human motion data, ACM Transactions on Graphics 21 (3) (2002) 491-500, https://doi.org/10.1145/566654.566607. DOI: https://doi.org/10.1145/566654.566607
C. Rose, B. Guenter, B. Bodenheimer, M.F. Cohen, Efficient generation of motion transitions using spacetime constraints, In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996) 147-154, https://doi.org/10.1145/237170.237229. DOI: https://doi.org/10.1145/237170.237229
T. Polichroniadis, N. Dodgson, Motion blending using a classifier system, In Proceedings of the 7th International Conference in Central Europe on Computer Graphics 1 (1999) 225-232, http://www.neildodgson.com/pubs/WSCG99.pdf.
G. Ashraf, K.C. Wong, Generating consistent motion transition via decoupled framespace interpolation, Blackwell Publishers Ltd. Oxford, UK and Boston, USA, Computer Graphics Forum 19 (3) (2000) 447-456, https://doi.org/10.1111/1467-8659.00437. DOI: https://doi.org/10.1111/1467-8659.00437
L. Kovar, M. Gleicher, Flexible automatic motion blending with registration curves, In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '03), Eurographics Association, Goslar, DEU, (2003) 214–224, http://dx.doi.org/10.2312/SCA03/214-224.
M. Gleicher, H.J. Shin, L. Kovar, A. Jepsen, Snap-together motion: assembling run-time animations, ACM SIGGRAPH (2008) 1-9, https://doi.org/10.1145/641480.641515. DOI: https://doi.org/10.1145/1401132.1401203
V.B. Zordan, A. Majkowska, B. Chiu, M. Fast, Dynamic response for motion capture animation, ACM Transactions on Graphics 24 (3) (2005) 697-701, https://doi.org/10.1145/1073204.1073249. DOI: https://doi.org/10.1145/1073204.1073249
H.J. Shin, H.S. Oh, Fat graphs: constructing an interactive character with continuous controls, In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation (2006) 291-298, http://dx.doi.org/10.2312/SCA/SCA06/291-298.
D. Holden, T. Komura, J. Saito, Phase-functioned neural networks for character control, ACM Transactions on Graphics (TOG), 36 (4) (2017) 1-13, https://doi.org/10.1145/3072959.3073663. DOI: https://doi.org/10.1145/3072959.3073663
F. Gaisbauer, P. Fröhlich, J. Lehwald, P. Agethen, E. Rukzio, Presenting a Deep Motion Blending Approach for Simulating Natural Reach Motions, Eurographics (Posters) (2018) 5-6, http://dx.doi.org/10.2312/egp.20181010.
F. Gaisbauer, J. Lehwald, J. Sprenger, E. Rukzio, Natural posture blending using deep neural networks, In Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games (2019) 1-6, https://doi.org/10.1145/3359566.3360052. DOI: https://doi.org/10.1145/3359566.3360052
Dokumentacja Unity dotycząca generowania przejść, https://docs.unity3d.com/Manual/class-Transition.html, [01.10.2023].
Baza danych animacji używanych w badaniu, http://mocap.cs.cmu.edu/, [01.10.2023].
Informacje dotyczące przekonwertowania jednostek miary w animacjach na centymetry, http://mocap.cs.cmu.edu/faqs.php, [01.10.2023].
Article Details
Abstract views: 252
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
