The methods of EMG data processing
Article Sidebar
Open full text
Published:
Mar 30, 2017
Issue Vol. 3 (2017)
Articles
-
Security of Web Applications
Michał Furtak1-5
-
Using of Node.js in creating application based on event-driven architecture
Władysław Hrynczyszyn, Małgorzata Plechawska-Wójcik6-10
-
Analysis of the effectiveness of text input methods using the mobile network communicator
Rafał Kacprzak, Piotr Kaniewski, Maria Skublewska-Paszkowska11-17
-
Analysis and evaluation of impact virtual reality on human state
Szymon Kołażyk, Konrad Maciąg, Dariusz Gutek18-22
-
Simulation of BOID type behaviours in Unity environment
Taras Lypovyi, Jerzy Montusiewicz23-27
-
Comparison of JEE platform web applications development using JavaServer Faces and Spring Boot example
Michał Marcin Kizeweter, Beata Pańczyk28-32
-
Increasing an efficiency of the web-applications developing the process through the combine of frameworks MeteorJS and AngularJS
Viacheslav Nishtuk, Elżbieta Miłosz33-37
-
The methods of EMG data processing
Michał Serej, Maria Skublewska - Paszkowska38-45
-
Methods for optimizing the performance of Unity 3D game engine based on third-person perspective game
Krzysztof Siarkowski, Przemysław Sprawka, Małgorzata Plechawska-Wójcik46-53
-
Comparison of mobile application using Swift and Objective-C
Kacper Erwin Sienkiewicz, Edyta Łukasik54-58
-
Efficiency analysis of Unity3D engine in terms of particle simulation
Mateusz Walczyna, Małgorzata Plechawska-Wójcik59-63
-
Comparative analysis of e-Learning tools
Weronika Prządka64-69
Main Article Content
DOI
Authors
Michał Serej
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland, Poland
Maria Skublewska - Paszkowska
Institute of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland, Poland
Abstract
The article presents both the methods of data processing of electromyography (EMG), and EMG signal analysis using the implemented piece of software. This application is used to load the EMG signal stored in a file with the .C3D extension. The analysis was conducted in terms of the highest muscles activaton during exercise recorded with Motion Capture technique.
Keywords:
EMG; Motion Capture; File C3D
References
[1] Basmajian J. V., De Luca C. J.: Muscles Alive: Their Functions Revealed by Electromyography, 1985
[2] Guglielminotti P., Merletti R.: Effect of electrode location on surface myoelectric signal variables: a simulation study, 1992.
[3] Laterza F., Olmo G.: Analysis of EMG signals by means of the matched wavelet transform, 1997.
[4] Gabor D.: Theory of communication,1946.
[5] Ismail A.R., Asfour S.S.: Continuous wavelet transform application to EMG signals during human gait, 1998.
[6] Pattichis C.S., Pattichis M.S.: Time-scale analysis of motor unit action potentials, 1999.
[7] Kumar D.K., Pah N.D., Bradley A.: Wavelet analysis of surface electromyography to determine muscle fatigue, 2003.
[8] Piper H.: Electrophysillogie Muschliche Muskeln, 1912.
[9] Cohen L.: Time-frequency analysis. Englewood Cliffs, 1995.
[10] Syeed A.M, Jones D.L.: Optimal kernel for nonstationary spectral estimation, 1995.
[11] Ricamato A.L., Absher R.G., Moffroid M.T., Tranowski J.P.: A time-frequency approach to evaluate electromyographic recordings, 1992.
[12] Davies M.R., Reisman S.S.: Time frequency analysis of the electromyogram during fatigue, 1994.
[13] Amin M., Cohen L., Williams W.J.: Methods and Applications for Time Frequency Analysis,1993.
[14] Graupe D., Cline W.K.: Functional Separation of EMG signals via ARMA identification. 1975.
[15] Sherif M.H.: Stochastic Model of Myoelectric Signals for Movement Pattern Recognition in Upper Limb Prostheses, 1980.
[16] Doerschuk P.C., Gustafson D.E., Willsky A.S.: Upper extremity limb function discrimination using EMG signal analysis,1983.
[17] Zhou Y., Chellappa R., Bekey G.: Estimation of intramuscular EMG signals from surface EMG signal analysis,1986.
[18] Kiryu T., Saitoh Y., Ishioka K.: Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model, 1992.
[19] Rosenfalck P.: Intra- and extracellular potential fields of active nerve and muscle fibres. A physico-mathematical analysis of different models,1969.
[20] Nandedkar S.D., Stålberg E.: Simulation of single muscle fibre action potentials,1983.
[21] Nandedkar S.D, Barkhaus P.E.: Phase interaction in the compound muscle action potential: application to motor unit estimates, 1992.
[22] Englehart K.B., Parker P.A.: Single motor unit myoelectric signal analysis with nonstationary data,1994.
[23] Zhang Y.T, Herzog W., Liu M.M.: A mathematical model of myoelectric signals obtained during locomotion, 1995.
[24] Karlsson S., Nystrom L.: Real-time system for EMG signal analysis of static and dynamic contractions, 1995.
[25] https://www.c3d.org/
[2] Guglielminotti P., Merletti R.: Effect of electrode location on surface myoelectric signal variables: a simulation study, 1992.
[3] Laterza F., Olmo G.: Analysis of EMG signals by means of the matched wavelet transform, 1997.
[4] Gabor D.: Theory of communication,1946.
[5] Ismail A.R., Asfour S.S.: Continuous wavelet transform application to EMG signals during human gait, 1998.
[6] Pattichis C.S., Pattichis M.S.: Time-scale analysis of motor unit action potentials, 1999.
[7] Kumar D.K., Pah N.D., Bradley A.: Wavelet analysis of surface electromyography to determine muscle fatigue, 2003.
[8] Piper H.: Electrophysillogie Muschliche Muskeln, 1912.
[9] Cohen L.: Time-frequency analysis. Englewood Cliffs, 1995.
[10] Syeed A.M, Jones D.L.: Optimal kernel for nonstationary spectral estimation, 1995.
[11] Ricamato A.L., Absher R.G., Moffroid M.T., Tranowski J.P.: A time-frequency approach to evaluate electromyographic recordings, 1992.
[12] Davies M.R., Reisman S.S.: Time frequency analysis of the electromyogram during fatigue, 1994.
[13] Amin M., Cohen L., Williams W.J.: Methods and Applications for Time Frequency Analysis,1993.
[14] Graupe D., Cline W.K.: Functional Separation of EMG signals via ARMA identification. 1975.
[15] Sherif M.H.: Stochastic Model of Myoelectric Signals for Movement Pattern Recognition in Upper Limb Prostheses, 1980.
[16] Doerschuk P.C., Gustafson D.E., Willsky A.S.: Upper extremity limb function discrimination using EMG signal analysis,1983.
[17] Zhou Y., Chellappa R., Bekey G.: Estimation of intramuscular EMG signals from surface EMG signal analysis,1986.
[18] Kiryu T., Saitoh Y., Ishioka K.: Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model, 1992.
[19] Rosenfalck P.: Intra- and extracellular potential fields of active nerve and muscle fibres. A physico-mathematical analysis of different models,1969.
[20] Nandedkar S.D., Stålberg E.: Simulation of single muscle fibre action potentials,1983.
[21] Nandedkar S.D, Barkhaus P.E.: Phase interaction in the compound muscle action potential: application to motor unit estimates, 1992.
[22] Englehart K.B., Parker P.A.: Single motor unit myoelectric signal analysis with nonstationary data,1994.
[23] Zhang Y.T, Herzog W., Liu M.M.: A mathematical model of myoelectric signals obtained during locomotion, 1995.
[24] Karlsson S., Nystrom L.: Real-time system for EMG signal analysis of static and dynamic contractions, 1995.
[25] https://www.c3d.org/
Article Details
Abstract views: 422
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
