Comparative analysis of CNN models for handwritten digit recognition
Article Sidebar
Open full text
Issue Vol. 32 (2024)
-
Performance analysis of selected database management systems
Radosław Kowalczyk, Jakub Smołka151-156
-
Performance evaluation of designated containerization and virtualization solutions using a synthetic benchmark
Sebastian Tarasiuk, Damian Traczuk, Kacper Szczepaniuk, Patryk Stoń, Jakub Smołka157-162
-
Analysis of the usability of daily LiDAR measurements performed using Apple devices
Rafał Porzuc, Piotr Kopniak163-170
-
Comparative analysis of Bootstrap and Foundation CSS frameworks
Dawid Pawelec, Tomasz Szymczyk171-178
-
Comparative analysis of CNN models for handwritten digit recognition
Krystyna Lidia Banaszewska, Małgorzata Plechawska-Wójcik179-185
-
The evolution of Microsoft Windows operating systems after 2001
Bartłomiej Wójtowicz, Norbert Wójcik186-193
-
Comparative analysis of tools for managing web application development
Paulina Wójcik, Małgorzata Plechawska-Wójcik194-198
-
Comparison of performance of Xamarin and Flutter cross-platform frameworks
Piotr Kowalczyk, Mariusz Dzieńkowski199-204
-
Performance comparison of working with a database in Spring Boot version 3.2.3 and Laravel version 8.83.27
Mateusz Zajączkowski205-209
-
Examination of the performance and scalability of a web application in a reactive and imperative approach using the Spring Framework
Karol Lis, Jakub Smołka210-216
-
Comparative analysis of the availability of popular social networking sites
Maciej Ciukaj, Maria Skublewska-Paszkowska217-222
-
Performance analysis of web application client layer development tools us-ing Angular, React and Vue as examples
Damian Bogusz, Paweł Ciszewski, Beata Pańczyk223-230
-
Comparative analysis of database mapping frameworks available in NuGet Manager
Maciej Klimiuk, Paweł Karabowicz, Małgorzata Plechawska-Wójcik231-238
-
A usability analysis of e-commerce systems: Prestashop, Magento and Joomla
Marcin Wijaszka, Mariusz Dzieńkowski239-245
-
Comparative analysis of the Express.js and ElysiaJS frameworks in the context of web application development
Damian Kostrzewa, Marek Miłosz246-250
Main Article Content
DOI
Authors
Abstract
The paper discusses the subject of convolutional neural networks used for handwritten digit classification. The purpose of the research is to evaluate the accuracy, performance, training, and classification time of three OCR networks (VGG-16, VGG-19 and AlexNet) and compare them with each other while selecting the most optimal one. The popular MNIST dataset of 70,000 images was used for the study. For each model, a preliminary study was conducted to determine the optimal parameters in the form of the number of input data and number of training epochs. The result of the work indicates that, despite the longer training and classification time, the AlexNet model achieved the highest precision, recall, and F1-score, indicating its ability to effectively classify images.
Keywords:
References
A. Przegalińska, L. Ciechanowski, Wykorzystanie algorytmów sztucznej inteligencji w instytucjach kultury, Ministerstwo Kultury i Dziedzictwa Narodowego, Ekspertyza Ministerialna, Warszawa, 2019-2020.
P. Norvig, S. Russel, Artificial Intelligence: a modern approach, Fourth Edition, Pearson, University of California at Berkeley, 2021.
K. Simonyan, A. Zisserman, Very Deep convolutional networks for large-scale image recognition, In International Conference on Learning Representations (ICLR) 6 (2016) 1-11.
A. Krizhevsky, I. S Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, Communications of the ACM 6 (2017) 84-90. DOI: https://doi.org/10.1145/3065386
Lecture MIT 6.S191 (2023): Convolutional Neural Networks, Massachusetts Institute of Technology https://www.youtube.com/watch?v=NmLK_WQBxB4 [01.03.2024]
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition in Proceedings of the IEEE 11 (1998) 2278-2324. DOI: https://doi.org/10.1109/5.726791
A. Baldominos, Y. Saez, P. Isasi, A Survey of handwritten character recognition with MNIST and EMNIST, Applied Sciences 9 (2019) 15-31. DOI: https://doi.org/10.3390/app9153169
G. S. Handelman, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods, American Journal of Roentgenology 1 (2019) 38-43. DOI: https://doi.org/10.2214/AJR.18.20224
J. Lever, M. Krzywinski, N. Altman, Classification evaluation, Nature Methods 13 (2016) 603-604. DOI: https://doi.org/10.1038/nmeth.3945
S. Mascarenhas, M. Agarwal, A comparison between VGG16, VGG19 and ResNet50, architecture frameworks for Image Classification In International conference on disruptive technologies for multi-disciplinary research and applications (Centon) IEEE 1 (2021) 96-99 DOI: https://doi.org/10.1109/CENTCON52345.2021.9687944
Article Details
Abstract views: 298

