Comparative analysis of Blender and 3ds Max in the aspect of reconstruc- ting selected artifact models derived from 3D scanning
Olga Struska
olga.baranowska@pollub.edu.plLublin University of Technology (Poland)
Krzysztof Dziedzic
Lublin University of Technology (Poland)
Abstract
This work concerns the comparison of Blender and 3ds Max programs in terms of reconstruction and visualization of artifacts from 3D scanning. Reconstructions were made in both programs, models were rendered and data from this process was downloaded. A multi-criteria method was used along with a short user perception survey. The experiment showed that Blender scored worse than 3ds Max, but in the end result you can see the similarities and differences of both programs.
Keywords:
3D models, reconstruction, Blender, 3ds MaxReferences
[1] Blender, https://www.blender.or, [05.06.2024].
Google Scholar
[2] 3ds Max, https://www.autodesk.pl/products/3ds-max, [05.06.2024].
Google Scholar
[3] Y. Hendriyani, V. A. Amrizal, The Comparison Between 3D Studio Max and Blender Based on Software Qualities. Journal of Physics: Conference Series 1387 (2019) 1–11, http://dx.doi.org/10.1088/1742-6596/1387/1/012030.
Google Scholar
[4] S. J. Prameswari, B. Basori, E. S. Wihidayat, The Comparison Between the Use of Blender and 3DS Max application toward students’ Comprehension of 3D Animation Subject at Vocational School in Surakata. Indonesian Journal of Informatics Education 3(2) (2019) 29–33, https://doi.org/10.20961/ijie.v3i2.25200.
Google Scholar
[5] P. Sawicki, T. Tomaszewski, Ocena wybranych programów typu freeware do modelowania 3D obiektów bliskiego zasięgu, Archiwum Fotogrametrii, Kartografii i Teledetekcji 21 (2010) 363–374.
Google Scholar
[6] I. N. Egorova, A. V. Haydamashchuk, Study of 3D-modeling software environments, Technology Audit and Production Reserves 6 (2013) 11–14, https://doi.org/
Google Scholar
10.15587/2312-8372.2013.19536.
Google Scholar
[7] S. Korga, K. Dziedzic, S. Skulimowski, S. Gnapowski, Optimising Amber Processing Using 3D Scanning: New Perspectives in Cultural Heritage, Applied Sciences 13 (2023) 1–13, https://doi.org/10.3390/app132412973.
Google Scholar
[8] Chow Shu-Kam, Chan Kwok-Leung, Reconstruction of photorealistic 3D model of ceramic artefcts for interactive virtual exhibition, Journal of Cultural Heritage 10 (2009) 161–173,https://doi.org/10.1016/j.culher.2008.08.011.
Google Scholar
[9] M. Miłosz, J. Kęsik, U. Abdulleev, 3D scanning and modeling of highly detailed and geometrically complex historical architectural objects: the example of the Juma Mosque in Khiva (Uzbekistan), Heritage Science 12 (2024) 1–14, https://doi.org/10.1186/s40494-024-01207-3.
Google Scholar
[10] M. Osiadacz, Wybrane techniki dokumentacji, rekonstrukcji i wizualizacji 3D na przykładzie zbioru neolitycznych zabytków z terenu Małopolski, Raport 12 (2017) 239–250.
Google Scholar
[11] D. Zawieska, T. Markowski, Fotogrametryczna rekonstrukcja modelu posągu wielkiego Buddy na podstawie zdjęć archiwalnych, Archiwum Fotogrametrii, Kartografii i Teledetekcji 21 (2010) 503–512.
Google Scholar
[12] Definicja, rodzaje i etapy analizy wielokryterialnej, https://mfiles.pl/pl/index.php/Analiza_wielokryterialna, [05.06.2024].
Google Scholar
Authors
Krzysztof DziedzicLublin University of Technology Poland
Statistics
Abstract views: 26PDF downloads: 15