Performance of machine learning tools. Comparve analysis of libraries in interpreted and compiled programming languages
Article Sidebar
Open full text
Issue Vol. 33 (2024)
-
Comparative analysis of performance between .NET platform versions
Grzegorz Grzegorczyk, Małgorzata Plechawska-Wójcik251-257
-
Performance analysis of .Net and Spring Boot microservices on Microsoft Azure
Konrad Krekora258-263
-
Comparative analysis of frameworks for creating user interfaces in iOS Systems
Sebastian Słupny, Edyta Łukasik264-268
-
Analysis of graphical user interfaces of music services taking into account universal design principles
Damian Mydlak, Kacper Adamiak, Maria Skublewska-Paszkowska269-276
-
Accessibility and usability analysis of online museum's graphical user interface
Karol Łazaruk, Kacper Majcher, Maria Skublewska-Paszkowska277-284
-
Performance comparison of the Java and Kotlin programming languages based on an auto-scroller mobile game
Piotr Gajek, Małgorzata Plechawska-Wójcik285-291
-
Web Accessibility Status of Open Access Journals in Africa: A 2024 Snapshot
Pastor Nso-Mangue, Sergio Luján-Mora292-297
-
Performance analysis of working with relational and non-relational databases in Java applications
Krzysztof Caban, Paweł Czuchryta, Beata Pańczyk298-305
-
Performance analysis of coroutines and other concurrency techniques in Kotlin language for I/O operations
Michał Grabowiec, Sebastian Wiktor, Jakub Smołka306-312
-
Comparative analysis of Blender and 3ds Max in the aspect of reconstruc- ting selected artifact models derived from 3D scanning
Olga Struska, Krzysztof Dziedzic313-316
-
Comparision of Artificial Inteligence models used in computer games on the Unity platform
Szymon Kacprzyk, Vladyslav Hutsenko317-322
-
Analysis of the performance and scalability of microservices depending on the communication technology
Jan Jarmoszewicz, Patryk Iwanowski, Małgorzata Plechawska-Wójcik323-330
-
Usability analysis of graphical interfaces of travel websites according to the universal design principles
Maciej Nawrot, Maria Skublewska-Paszkowska331-338
-
Performance of machine learning tools. Comparve analysis of libraries in interpreted and compiled programming languages
Tomasz Wiejak, Jakub Smołka339-345
-
Analysis of the usability of graphical interfaces of car rental websites with consideration of universal design principles
Jakub Szewczyk, Maria Skublewska-Paszkowska346-353
-
The usefulness of the T1DDS simulator in the context of multi-day type 1 diabetes therapy
Tomasz Nowicki354-360
Main Article Content
DOI
Authors
Abstract
The article compares machine learning tools using the example of several popular programming languages. Existing tools in the following programming languages were tested and compared with each other: Python, Java, R, Julia, C#. For the needs of article, algorithms were created in each studied language, operating on the same test set and using algorithms from the same group. The collected results included the program's running time, number of lines of code and accuracy of trained model. Based on the obtained data, conclusions were drawn that interpreted language libraries in terms of creating machine learning solutions are more effective than compiled language libraries.
Keywords:
References
[1] B. Johnson, A. S. Chandran, Comparison between Python, Java and R programming language in machine learning, International Research Journal of Modernization in Engineering Technology and Science 3(6) (2021) 1–6.
[2] M. Wickham, Practical Java Machine Learning, Apress, Irving, 2018. DOI: https://doi.org/10.1007/978-1-4842-3951-3
[3] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, S. J. Cunningham, Weka: Practical machine learning tools and techniques with Java implementations, Working Paper, The University of Waikato, Hamilton, 1999.
[4] T. Abeel, Y. Van de Peer, Y. Saeys, Java-ML: A Machine Learning Library, Journal of Machine Learning Research 10(34) (2009) 931–934, https://dl.acm.org/doi/10.5555/1577069.1577103.
[5] J. Heaton, Encog: Library of Interchangeable Machine Learning Models for Java and C#, Journal of Machine Learning Research 16(36) (2015) 1243–1247, https://doi.org/10.48550/arXiv.1506.04776.
[6] L. I. Hatledal, F. Sanfilippo, H. Zhang, JIOP: A Java Intelligent Optimisation And Machine Learning Framework, Proceedings of the European Conference on Modelling and Simulation (2014) 1-7, http://dx.doi.org/10.7148/2014-0101. DOI: https://doi.org/10.7148/2014-0101
[7] C. Rackauckas, R. Anantharaman, A. Edelman, S. Gowda, M. Gwozdz, A. Jain, C. Laughman, Y. Ma, F. Martinuzzi, A. Pal, U. Rajput, E. Saba, V. B. Shah, Composing Modeling And Simulation With Machine Learning In Julia, Proceedings of the Annual Modeling and Simulation Conference (ANNSIM) (2022) 1–17, https://doi.org/10.48550/arXiv.2105.05946. DOI: https://doi.org/10.23919/ANNSIM55834.2022.9859453
[8] K. Gao, G. Mei, F. Piccialli, S. Cuomo, J. Tu, Z. Huo, Julia language in machine learning: Algorithms, applications, and open issues, Computer Science Review 37 (2020) 1-13, https://doi.org/10.1016/j.cosrev.2020.100254. DOI: https://doi.org/10.1016/j.cosrev.2020.100254
[9] A. D. Blaom, F. Kiraly, T. Lienart, Y. Simillides, D. Arenas, S. J. Vollmer, MLJ: A Julia package for composable Machine Learning, Journal of Open Source Software 5(55) (2020) 1-9, https://doi.org/10.21105/joss.02704. DOI: https://doi.org/10.21105/joss.02704
[10] M. Innes, Flux: Elegant machine learning with Julia, Journal of Open Source Software 3(25) (2018) 1, https://doi.org/10.21105/joss.00602. DOI: https://doi.org/10.21105/joss.00602
[11] D. Yuret, Knet: beginning deep learning with 100 lines of Julia, Proceedings of the Machine Learning Systems Workshop at NIPS (2016) 1-7.
[12] H-A. Goh, C-K. Ho, F. S. Abas, Front-end deep learning web apps development and deployment: a review, Applied Intelligence 53(12) (2023) 15923–15945, http://dx.doi.org/10.1007/s10489-022-04278-6. DOI: https://doi.org/10.1007/s10489-022-04278-6
[13] C. Molnar, G. Casalicchio, B. Bischl, iml: An R package for Interpretable Machine Learning, Journal of Open Source Software 3(26) (2018) 1-2, https://doi.org/10.21105/joss.00786. DOI: https://doi.org/10.21105/joss.00786
[14] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff, B. Bischl, mlr3: A modern object-oriented machine learning framework in R, Journal of Open Source Software 4(44) (2019) 1-3, https://doi.org/10.21105/joss.01903. DOI: https://doi.org/10.21105/joss.01903
[15] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, Z. M. Jones, mlr: Machine Learning in R, Journal of Machine Learning Research 17(170) (2016) 1–5.
[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research 12(85) (2012) 2825–2830, https://doi.org/10.48550/arXiv.1201.0490.
Article Details
Abstract views: 281

