Performance of machine learning tools. Comparve analysis of libraries in interpreted and compiled programming languages

Tomasz Wiejak

tomasz.wiejak@pollub.edu.pl
Lublin University of Technology (Poland)

Jakub Smołka


Lublin University of Technology (Poland)
https://orcid.org/0000-0002-8350-2537

Abstract

The article compares machine learning tools using the example of several popular programming languages. Existing tools in the following programming languages were tested and compared with each other: Python, Java, R, Julia, C#. For the needs of article, algorithms were created in each studied language, operating on the same test set and using algorithms from the same group. The collected results included the program's running time, number of lines of code and accuracy of trained model. Based on the obtained data, conclusions were drawn that interpreted language libraries in terms of creating machine learning solutions are more effective than compiled language libraries.


Keywords:

machine learning, interpreted language, compiled language

[1] B. Johnson, A. S. Chandran, Comparison between Python, Java and R programming language in machine learning, International Research Journal of Modernization in Engineering Technology and Science 3(6) (2021) 1–6.
  Google Scholar

[2] M. Wickham, Practical Java Machine Learning, Apress, Irving, 2018.
  Google Scholar

[3] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, S. J. Cunningham, Weka: Practical machine learning tools and techniques with Java implementations, Working Paper, The University of Waikato, Hamilton, 1999.
  Google Scholar

[4] T. Abeel, Y. Van de Peer, Y. Saeys, Java-ML: A Machine Learning Library, Journal of Machine Learning Research 10(34) (2009) 931–934, https://dl.acm.org/doi/10.5555/1577069.1577103.
  Google Scholar

[5] J. Heaton, Encog: Library of Interchangeable Machine Learning Models for Java and C#, Journal of Machine Learning Research 16(36) (2015) 1243–1247, https://doi.org/10.48550/arXiv.1506.04776.
  Google Scholar

[6] L. I. Hatledal, F. Sanfilippo, H. Zhang, JIOP: A Java Intelligent Optimisation And Machine Learning Framework, Proceedings of the European Conference on Modelling and Simulation (2014) 1-7, http://dx.doi.org/10.7148/2014-0101.
  Google Scholar

[7] C. Rackauckas, R. Anantharaman, A. Edelman, S. Gowda, M. Gwozdz, A. Jain, C. Laughman, Y. Ma, F. Martinuzzi, A. Pal, U. Rajput, E. Saba, V. B. Shah, Composing Modeling And Simulation With Machine Learning In Julia, Proceedings of the Annual Modeling and Simulation Conference (ANNSIM) (2022) 1–17, https://doi.org/10.48550/arXiv.2105.05946.
  Google Scholar

[8] K. Gao, G. Mei, F. Piccialli, S. Cuomo, J. Tu, Z. Huo, Julia language in machine learning: Algorithms, applications, and open issues, Computer Science Review 37 (2020) 1-13, https://doi.org/10.1016/j.cosrev.2020.100254.
  Google Scholar

[9] A. D. Blaom, F. Kiraly, T. Lienart, Y. Simillides, D. Arenas, S. J. Vollmer, MLJ: A Julia package for composable Machine Learning, Journal of Open Source Software 5(55) (2020) 1-9, https://doi.org/10.21105/joss.02704.
  Google Scholar

[10] M. Innes, Flux: Elegant machine learning with Julia, Journal of Open Source Software 3(25) (2018) 1, https://doi.org/10.21105/joss.00602.
  Google Scholar

[11] D. Yuret, Knet: beginning deep learning with 100 lines of Julia, Proceedings of the Machine Learning Systems Workshop at NIPS (2016) 1-7.
  Google Scholar

[12] H-A. Goh, C-K. Ho, F. S. Abas, Front-end deep learning web apps development and deployment: a review, Applied Intelligence 53(12) (2023) 15923–15945, http://dx.doi.org/10.1007/s10489-022-04278-6.
  Google Scholar

[13] C. Molnar, G. Casalicchio, B. Bischl, iml: An R package for Interpretable Machine Learning, Journal of Open Source Software 3(26) (2018) 1-2, https://doi.org/10.21105/joss.00786.
  Google Scholar

[14] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff, B. Bischl, mlr3: A modern object-oriented machine learning framework in R, Journal of Open Source Software 4(44) (2019) 1-3, https://doi.org/10.21105/joss.01903.
  Google Scholar

[15] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, Z. M. Jones, mlr: Machine Learning in R, Journal of Machine Learning Research 17(170) (2016) 1–5.
  Google Scholar

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research 12(85) (2012) 2825–2830, https://doi.org/10.48550/arXiv.1201.0490.
  Google Scholar

Download


Published
2024-12-30

Cited by

Wiejak, T., & Smołka, J. (2024). Performance of machine learning tools. Comparve analysis of libraries in interpreted and compiled programming languages. Journal of Computer Sciences Institute, 33, 339–345. https://doi.org/10.35784/jcsi.6589

Authors

Tomasz Wiejak 
tomasz.wiejak@pollub.edu.pl
Lublin University of Technology Poland

Authors

Jakub Smołka 

Lublin University of Technology Poland
https://orcid.org/0000-0002-8350-2537

Statistics

Abstract views: 33
PDF downloads: 21


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.