[1] B. Johnson, A. S. Chandran, Comparison between Python, Java and R programming language in machine learning, International Research Journal of Modernization in Engineering Technology and Science 3(6) (2021) 1–6.
[2] M. Wickham, Practical Java Machine Learning, Apress, Irving, 2018.
DOI: https://doi.org/10.1007/978-1-4842-3951-3
[3] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, S. J. Cunningham, Weka: Practical machine learning tools and techniques with Java implementations, Working Paper, The University of Waikato, Hamilton, 1999.
[4] T. Abeel, Y. Van de Peer, Y. Saeys, Java-ML: A Machine Learning Library, Journal of Machine Learning Research 10(34) (2009) 931–934, https://dl.acm.org/doi/10.5555/1577069.1577103.
[5] J. Heaton, Encog: Library of Interchangeable Machine Learning Models for Java and C#, Journal of Machine Learning Research 16(36) (2015) 1243–1247, https://doi.org/10.48550/arXiv.1506.04776.
[6] L. I. Hatledal, F. Sanfilippo, H. Zhang, JIOP: A Java Intelligent Optimisation And Machine Learning Framework, Proceedings of the European Conference on Modelling and Simulation (2014) 1-7, http://dx.doi.org/10.7148/2014-0101.
DOI: https://doi.org/10.7148/2014-0101
[7] C. Rackauckas, R. Anantharaman, A. Edelman, S. Gowda, M. Gwozdz, A. Jain, C. Laughman, Y. Ma, F. Martinuzzi, A. Pal, U. Rajput, E. Saba, V. B. Shah, Composing Modeling And Simulation With Machine Learning In Julia, Proceedings of the Annual Modeling and Simulation Conference (ANNSIM) (2022) 1–17, https://doi.org/10.48550/arXiv.2105.05946.
DOI: https://doi.org/10.23919/ANNSIM55834.2022.9859453
[8] K. Gao, G. Mei, F. Piccialli, S. Cuomo, J. Tu, Z. Huo, Julia language in machine learning: Algorithms, applications, and open issues, Computer Science Review 37 (2020) 1-13, https://doi.org/10.1016/j.cosrev.2020.100254.
DOI: https://doi.org/10.1016/j.cosrev.2020.100254
[9] A. D. Blaom, F. Kiraly, T. Lienart, Y. Simillides, D. Arenas, S. J. Vollmer, MLJ: A Julia package for composable Machine Learning, Journal of Open Source Software 5(55) (2020) 1-9, https://doi.org/10.21105/joss.02704.
DOI: https://doi.org/10.21105/joss.02704
[10] M. Innes, Flux: Elegant machine learning with Julia, Journal of Open Source Software 3(25) (2018) 1, https://doi.org/10.21105/joss.00602.
DOI: https://doi.org/10.21105/joss.00602
[11] D. Yuret, Knet: beginning deep learning with 100 lines of Julia, Proceedings of the Machine Learning Systems Workshop at NIPS (2016) 1-7.
[12] H-A. Goh, C-K. Ho, F. S. Abas, Front-end deep learning web apps development and deployment: a review, Applied Intelligence 53(12) (2023) 15923–15945, http://dx.doi.org/10.1007/s10489-022-04278-6.
DOI: https://doi.org/10.1007/s10489-022-04278-6
[13] C. Molnar, G. Casalicchio, B. Bischl, iml: An R package for Interpretable Machine Learning, Journal of Open Source Software 3(26) (2018) 1-2, https://doi.org/10.21105/joss.00786.
DOI: https://doi.org/10.21105/joss.00786
[14] M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. Au, G. Casalicchio, L. Kotthoff, B. Bischl, mlr3: A modern object-oriented machine learning framework in R, Journal of Open Source Software 4(44) (2019) 1-3, https://doi.org/10.21105/joss.01903.
DOI: https://doi.org/10.21105/joss.01903
[15] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, Z. M. Jones, mlr: Machine Learning in R, Journal of Machine Learning Research 17(170) (2016) 1–5.
[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research 12(85) (2012) 2825–2830, https://doi.org/10.48550/arXiv.1201.0490.