Effectiveness of artificial neural networks in recognising handwriting characters
Article Sidebar
Open full text
Issue Vol. 7 (2018)
-
Web application development using ASP.NET MVC and JavaServer Faces
Mariia Radutina, Beata Pańczyk102-107
-
Performance and possibility analysis of Laravel tool dedicated to create modern web applications
Przemysław Mincewicz, Małgorzata Plechawska-Wójcik108-115
-
Comparison of performance of game engines across various platforms
Paweł Skop116-119
-
Comparative analysis of selected human-computer interfaces
Kamil Bartosz Podkowiak, Damian Burak, Tomasz Szymczyk120-125
-
Developing application in JavaScript - comparison of commercial and open source solution
Patrycja Jabłońska126-131
-
Comparison of Wordpress Woocommerce with Magento Community Edition
Cezary Cichocki132-137
-
Analysis of query execution speed in the selected NoSQL databases
Wojciech Bolesta138-141
-
The use of .NET Core in web applications development
Ewelina Piątkowska, Katarzyna Wąsik, Małgorzata Plechawska-Wójcik142-149
-
Analysis of protection capabilities against SQL Injection attacks
Bogdan Krawczyński, Jarosław Marucha, Grzegorz Kozieł150-157
-
Effectiveness Comparison of the AngularJS and Meteor frameworks
Oleksandr Chornyi, Marek Miłosz158-161
-
Efficiency analysis of the Ionic 2 platform
Robert Pyć, Małgorzata Plechawska-Wójcik162-167
-
Performance comparison between Xamarin and Java database operations
Oleh Datsko, Elżbieta Miłosz168-171
-
Comparative analysis of reactions to visual and auditory stimuli in research on EEG evoked potentials
Łukasz Tyburcy, Małgorzata Plechawska-Wójcik172-177
-
Usability analysis of AngularJS framework in the context of simple internet application
Krzysztof Pawelec178-182
-
Analysis of Xamarin capabilities for building mobile multi-platform applications
Michał Dras, Grzegorz Fila, Małgorzata Plechawska-Wójcik183-190
-
Comparative analysis of selected programs for optical text recognition
Edyta Łukasik, Tomasz Zientarski191-194
-
Comparison of web applications development possibilities in JEE environment by the example of Spring Boot and Vaadin
Beniamin Abramowicz, Beata Pańczyk195-199
-
A comparative analysis of selected Java Script frameworks in the context of web applications on the example of Angular and BackboneJS
Mateusz Moczulski, Małgorzata Plechawska-Wójcik200-204
-
Comparative analysis of the usage of Angular2 and Ember.js frameworks
Jan Palak, Małgorzata Plechawska-Wójcik205-209
-
Effectiveness of artificial neural networks in recognising handwriting characters
Marek Miłosz, Janusz Gazda210-214
Main Article Content
DOI
Authors
Abstract
Artificial neural networks are one of the tools of modern text recognising systems from images, including handwritten ones. The article presents the results of a computational experiment aimed at analyzing the quality of recognition of handwritten digits by two artificial neural networks (ANNs) with different architecture and parameters. The correctness indicator was used as the basic criterion for the quality of character recognition. In addition, the number of neurons and their layers and the ANNs learning time were analyzed. The Python language and the TensorFlow library were used to create the ANNs, and software for their learning and testing. Both ANNs were learned and tested using the same big sets of images of handwritten characters.
Keywords:
References
[2] S. Anagnoste, Robotic Automation Process - The next major revolution in terms of back office operations improvement, Proceedings of The International Conference on Business Excellence, vol 11(1) (2017), 676-686.
[3] W. Kacalak, M. Majewski, A New Method for Handwriting Recognition Using Artificial Neural Networks. Intelligent Engineering Systems Through Artificial Neural Networks, 16 (2006), 459-465.
[4] J. Smołka, M. Skublewska-Paszkowska, E. Łukasik, Algorithm for selecting optimal clustering parameters used for oversegmentation reduction. PRZEGLAD ELEKTROTECHNICZNY, 9, ( 2016), 250-256.
[5] Z. Gomółka, B. Twaróg, E. Żesławska, Rozpoznawanie pisma odręcznego za pomocą sztucznych sieci neuronowych, Technical News, (2013), 98-102.
[6] J. Gazda, Zastosowanie sztucznych sieci neuronowych do rozpoznawania tekstu. Praca dyplomowa pod kierunkiem M.Miłosza, Lublin, (2018), 42.
[7] What is the TensorFlow machine intelligence platform? https://opensource.com/article/17/11/intro-tensorflow [11.01.2018]
[8] HaoBiao, Dae-Seong Kang, The Research of Face Expression Recognition based on CNN using Tensorflow. Journal of Advanced Information Technology and Convergence, 7, (2017), 55-63.
[9] A. Ignatov, Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Applied Soft Computing, 62, (2018), 915-922.
[10] F. Ertam, G. Aydin, Data classification with deep learning using Tensorflow. 2017 International Conference on Computer Science and Engineering (UBMK), (2017), 755-758.
[11] N. Gavai, Y. Jakhade, S. Tribhuvan, R. Bhattad, MobileNets for flower classification using TensorFlow. 2017 International Conference on Big Data, IoT and Data Science (BID) Big Data, IoT and Data Science, (2017), 154-158.
[12] J. Evermann, J. R. Rehse, P. Fettke, XES tensorflow - Process prediction using the tensorflow deep-learning framework. Proceedings of the 29th International Conference on Advanced Information Systems Engineering, 1848, (2017), 41-48.
[13] The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/ [11.01.2018]
Article Details
Abstract views: 376
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
