Method of synchronization and data processing from differents inertial sensors kits sources for the human gait analysis
Article Sidebar
Open full text
Issue Vol. 9 (2018)
-
Security assessment of the selected mobile platform
Aleksandra Iwaniuk302-307
-
Author's method of securing the screen of the mobile device.
Grzegorz Iwaniuk308-310
-
Method of increasing the QR code capacity – Hexa QR Code
Daniel Janowski311-317
-
Comparative analysis of approches in developing Android applications using Xamarin technology
Michał Bartkiewicz, Adrian Dziedzic318-323
-
Quality evaluation of selected tools to automate application testing
Łukasz Szczepkowicz, Beata Pańczyk324-327
-
Comparative analysis of Front-End Code Playground tools
Mateusz Magier, Beata Pańczyk328-333
-
Comparison of selected tools to perform unit tests
Piotr Strzelecki, Maria Skublewska-Paszkowska334-339
-
Assessment of the web application security effectiveness against various methods of network attacks
Mateusz Erbel, Piotr Kopniak340-344
-
Method of synchronization and data processing from differents inertial sensors kits sources for the human gait analysis
Aleksandra Goźdź, Maciej Kalinowski, Piotr Kopniak345-349
-
Testing the functionality of the application made in .NET Core technology on the Raspberry Pi II platform
Tomasz Piotr Sajnóg, Dariusz Czerwiński350-358
Main Article Content
DOI
Authors
maciej.kalinowski@pollub.edu.pl
Abstract
The article talks about results of data synchronization measurements sourced from two recording gait systems for human gait analyses. Two systems are Xsens sensor kits: MT Awinda, Xbus Kit. The article cover file format used to save data and synchronization method for sensor measurement from above mentioned kits. On the basis of the studies carried out, sensor measurement from different places on human body are unify to a common frame of reference. The discussed method provides also progressive data processing for angles range from -180° to 180° conversion to the absolute angle value from initial sensor settings.
Keywords:
References
[2] Schlachetzki J. C. M., Barth J., Marxreiter F., Gossler J., Kohl Z., Reinfelder S. i inni, Wearable sensors objectively measure gait parameters in Parkinson’s disease, Plos One, 2017
[3] Margiotta N., Avitabile G., Coviello G., A Wearable Wireless System for Gait Analysis for Early Diagnosis of Alzheimer and Parkinson Disease, IEEE, 2016
[4] Chen W., Xu Y., Wang J., Zhang J., Kinematic Analysis of Human Gait Based on Wearable Sensor System for Gait Rehabilitation, Journal of Medical and Biological Engineering, 2016
[5] Kopniak P., Kamiński M., Natural interface for robotic arm controlling based on inertial motion capture, IEEE, 2016
[6] Kopniak P., Kamiński M., Żyła K., Zdalne sterowanie ramieniem robota z wykorzystaniem inercyjnych czujników rejestracji ruchu, Logistyka, 2014
[7] Sacha E., Metody trójwymiarowej analizy ruchu człowieka, Aktualne Problemy Biomechaniki, 2008
[8] Kopniak P., Java wrapper for Xsens motion capture system, IEEE, 2014
[9] Bannach D., Amft O., Lukowicz P., Automatic Event-Based Synchronization of Multimodal Data Streams from Wearable and Ambient Sensors, Springer, 2009
[10] Lukac M., Davis P., Clayton R., Estrin D., Recovering temporal integrity with data driven time synchronization, IEEE, 2009
[11] Xsens 3D motion tracking, https://www.xsens.com, 18.06.2018
[12] Unnamed Systems Technology, https://www.unmannedsystemstechnology.com/2018/07/whitepaper-understanding-xsens-mems-based-motion-trackers/,18.06.2018
Article Details
Abstract views: 330
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
