ON THE EFFECTS OF THE INTERPHASE ON THE DAMPING OF CFRP STRUCTURES: AN EXPERIMENTAL INVESTIGATION
Mattia Gasenge
m.gasenge@studenti.unipi.itUniversità di Pisa (Italy)
https://orcid.org/0009-0001-3012-7243
Paolo Sebastiano Valvo
Università di Pisa (Italy)
https://orcid.org/0000-0001-6439-1926
Laura Aliotta
Università di Pisa (Italy)
https://orcid.org/0000-0003-1876-5995
Andrea Lazzeri
Università di Pisa (Italy)
https://orcid.org/0000-0002-9463-1502
Abstract
The increased adoption of composite laminates in modern engineering requires advancement in the prediction of their dynamic behavior. Damping is a major design constraint in aerospace structures subjected to cyclic loads. While the effects caused by damping are well known, the mechanisms that cause it at the microscopic level are still unclear on a quantitative basis. Testing of these phenomena requires some difficulties to be overcome, like the contribution of spurious sources. The study focuses on the effects that the interphase has on the damping properties of carbon fiber-reinforced polymer (CFRP) composite structures. Three-phase models are employed to investigate the dependence of damping on the interphase mechanical properties, with a focus on the fiber-matrix interfacial shear strength. The experimental campaign confirms the attended results: in particular, a stronger interphase determines a lower damping of the structure.
Keywords:
Damping, Interphase, CFRP, Free Decay, SilanesReferences
X. Tang and X. Yan, “A review on the damping properties of fiber reinforced polymer composites”, J. Ind. Text., vol. 49, no. 6, pp. 693–721, 2020.
DOI: https://doi.org/10.1177/1528083718795914
Google Scholar
J. M. Kennedy, D. D. Edie, A. Banerjee, and R. J. Cano, “Characterization of interfacial bond strength by dynamic analysis”, J. Compos. Mater., vol. 26, no. 6, pp. 869–882, 1992.
DOI: https://doi.org/10.1177/002199839202600605
Google Scholar
S. H. Aziz and M. P. Ansell, “The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1–polyester resin matrix”, Compos. Sci. Technol., vol. 64, no. 9, pp. 1219–1230, 2004.
Google Scholar
T. Doan, H. Brodowsky, and E. Mäder, “Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour”, Compos. Sci. Technol., vol. 67, no. 13, pp. 2707–2714, 2007.
Google Scholar
V. G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, “Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites”, Compos. Part A Appl. Sci. Manuf., vol. 36, no. 11, pp. 1499–1506, 2005.
Google Scholar
S. K. Chaturvedi and G. Y. Tzeng, “Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites”, Compos. Eng., vol. 1, no. 1, pp. 49–60, 1991.
DOI: https://doi.org/10.1016/0961-9526(91)90025-N
Google Scholar
T. Murayama and E. L. Lawton, “Dynamic loss energy measurement of tire cord adhesion to rubber”, J. Appl. Polym. Sci., vol. 17, no. 3, pp. 669–677, 1973.
DOI: https://doi.org/10.1002/app.1973.070170301
Google Scholar
B. Z. Jang, “Control of interfacial adhesion in continuous carbon and kevlar fiber reinforced polymer composites”, Compos. Sci. Technol., vol. 44, no. 4, pp. 333–349, 1992.
DOI: https://doi.org/10.1016/0266-3538(92)90070-J
Google Scholar
A. S. Tikhomirov, N. E. Sorokina, and V. V. Avdeev, “Surface modification of carbon fibers with nitric acid solutions”, Inorg. Mater., vol. 47, pp. 609–613, 2011.
DOI: https://doi.org/10.1134/S0020168511060203
Google Scholar
X. Qian, Y. G. Zhang, X. F. Wang, Y. J. Heng, and J. H. Zhi, “Effect of carbon fiber surface functionality on the moisture absorption behavior of carbon fiber/epoxy resin composites”, Surf. Interface Anal., vol. 48, no. 12, pp. 1271–1277, 2016.
Google Scholar
T. Sun, M. Li, S. Zhou, M. Liang, Y. Chen, and H. Zou, “Multiscale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites”, Appl. Surf. Sci., vol. 499, no. 143929, 2020.
Google Scholar
D. Xu, B. Liu, G. Zhang, S. Long, X. Wang, and J. Yang, “Effect of air plasma treatment on interfacial shear strength of carbon fiber–reinforced polyphenylene sulfide”, High Perform. Polym., vol. 28, no. 4, pp. 411–424, 2016.
DOI: https://doi.org/10.1177/0954008315585012
Google Scholar
B. Yu, Z. Jiang, X. Tang, C. Y. Yue, and J. Yang, “Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating”, Compos. Sci. Technol., vol. 99, pp. 131–140, 2014.
DOI: https://doi.org/10.1016/j.compscitech.2014.05.021
Google Scholar
J. Shi, Y. Yamamoto, M. Mizuno, and C. Zhu, “Interfacial performance enhancement of carbon fiber/epoxy composites by a two-step surface treatment”, J. Mech. Sci. Technol., vol. 35, pp. 91–97, 2021.
DOI: https://doi.org/10.1007/s12206-020-1208-y
Google Scholar
Z. Wen, C. Xu, X. Qian, Y. Zhang, X. Wang, S. Song, M. Dai, and C. Zhang, “A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent”, Appl. Surf. Sci., vol. 486, pp. 546–554, 2019.
DOI: https://doi.org/10.1016/j.apsusc.2019.04.248
Google Scholar
S. H. Wang, L. L. Yao, J. H. Jin, G. Li, and S. L. Yang, “Effect of air oxidation treatment on interficial properties of carbon fibers”, Mater. Sci. Forum, vol. 993, pp. 695–700, 2020.
DOI: https://doi.org/10.4028/www.scientific.net/MSF.993.695
Google Scholar
E. E. Ungar and E. M. Kerwin Jr, “Loss factors of viscoelastic systems in terms of energy concepts”, J. Acoust. Soc. Am., vol. 34, no. 7, pp. 954–957, 1962.
DOI: https://doi.org/10.1121/1.1918227
Google Scholar
Authors
Mattia Gasengem.gasenge@studenti.unipi.it
Università di Pisa Italy
https://orcid.org/0009-0001-3012-7243
Statistics
Abstract views: 133PDF downloads: 173
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in this journal are open access and distributed under the terms of the Creative Commons Attribution 4.0 International License.