Promoting Sustainability Through Green Chemistry, Part 2

Tadeusz Paryjczak


Instytut Chemii Ogólnej i Ekologicznej Politechniki Łódzkiej, 90-924 Łódź, ul. Żeromskiego 116, Poland (Poland)


Abstract

Green Chemistry is an important tool in the achievement of sustainability. Its implementation, along with the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances, is essential if the expanding global populations are to enjoy an increased standard of living without exerting a negative impact on the health of the planet. One of the major goods of sustainability is the maintenance of an optimal balance between increased manufacturing output and a clean and safe environment. Cleaner technologies will allow chemical enterprises to provide society with the good and services on which it depends, albeit in an environmentally responsible manner. Green chemistry can provide solutions for such global challenges as climate change, sustainable agriculture, energy, toxics in the environment and the depletion of natural resources. A collaborative effort by industry, the academic world and government is needed to promote the adoption of the green chemistry technologies necessary to put a sustainable society in place.


Keywords:

green chemistry, sustainability, green technologies, principles of green chemistry, pollution prevention

ARUNAJATESAN V., SUBRAMANIAM B., HUTCHENSON K.W., HERMES F.E., 2001, Fixed Bed Hydrogenation of Organic Compounds In Supercritical Carbon Dioxide, w: Chemical Engineering Science, No 56, 1363- 1369.
  Google Scholar

BOYDE S., 2002, Green Lubricants. Environmental Benefits and Impacts of Lubrification, w: Green Chemistry, No 4, 293.
  Google Scholar

BRANDT C., 2002, Sustainable Development and Responsible Care-Die w: Chemische Industrie auf dem Veg in Eine Grüne Zukunft, No 36(4), 224.
  Google Scholar

ELBASHIR N.O., DUTTA P., MANIVANNAN A., SEEHRA M.S., ROBERTS C.B., 2005, Impact of Cobalt-Based Catalyst Characteristics on the Performance of Conventional Gas-Phase and Supercritical-Phase Fisher-Tropsch Synthesis, w: Applied Catalysis, No 285, 169- 180.
  Google Scholar

HORVATH J.T., JOO F., Aqueous Organometallic Chemistry and Catalysis, Kluwer Academic Publishers, Dordrecht 1995.
  Google Scholar

HOFFER R., BIGORRA J., 2007, Green Chemistry – a Sustainable Solution for Industrial Specialties Applications, w: Green Chemistry No 9, 2003-2012.
  Google Scholar

HOFFER R., Perspectiven Nachwachsender, Rohstoffe in der Chemie, Winheim, New York, Basel, Cambridge, Tokyo, 1996.
  Google Scholar

HYDE J.R., LICENCE P., CARTER D., POLIAKOFF M., 2001, Continous Catalytic Reactions, 2001.
  Google Scholar

JESSOP P., LEITNER W., Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim 1999.
  Google Scholar

JUNG J., PERRUT M., 2001, Particle Design Using Supercritical Fluids, Literature and Patent Survey, w: Journal of Supercritical Fluids, No 20, 179-219.
  Google Scholar

LI C., 2005, Chemical Reviev, Vol 105, 3095.
  Google Scholar

LUTHER R., Lubricants in the Environment in Lubricants and Lubrication, w: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley VCH, Weinhem, New York, Chichester, Brisbone, Singapore, Toronto, 2002.
  Google Scholar

MENDES R.L, REIS A., PEREIRA A., CARDOSO M., PALAVRA A., COELHO J., Supercritical CO2 Extraction of γ Linolenic Acid (GLA) from the Cyanobacterium Arthrospira(Spirulina), Maxima: Experiments and Modeling, w: Chemical Enginering Journal, No 105, 147-152.
  Google Scholar

PARYJCZAK T., LEWICKI A., 1985, Kataliza w zielonej chemii, w: Przemysł Chemiczny Vol. 85/2, 2-12.
  Google Scholar

PARYJCZAK T., LEWICKI A., ZABORSKI M., Zielona Chemia, PAN oddział w Łodzi, Komisja Ochrony Środowiska, Łódź, 2005.
  Google Scholar

PERNAK J., 2003, Ciecze jonowe. Związki na miarę XXI wieku, w: Przemysł Chemiczny, Vol. 8, 521.
  Google Scholar

PRAJPATI D., GOHAIN M., 2004, Recent Advances In the Application of Supercritical Fluids for Carbon-Carbon Bond Formation in Organic Synthesis, w: Tetrahedron, No 60, 815- 833.
  Google Scholar

ROMERO M.D., CALVO L., ALBA C., HABULIN M., PRIMOZIC M., KNEZ Z., 2005, Enzimatic Synthesis of Isoamyl Acetate with Immobilized Candida Autaretica Lipase in Supercritical Carbon Dioxide, w: Journal Supercritical Fluids, No 33, 77-84.
  Google Scholar

SHI B., JACOBS G., SPARKS D., DAVIS B.H., 2005, Fisher-Tropsch Synthesis; 14C Labeled 1-alkene Conversion Using Supercritical Conditions with Co/Al2O3, w: Fuel, No 84, 1093-1098.
  Google Scholar

STAHL E., QUIRIN K.W., GERARD D., Dense Gases of Extraction and Refining, Springer-Verlag, Berlin, Heidelberg, 1998.
  Google Scholar

STAHL E., Extraction with Supercritical Gases, Verlag Chemie GmbH, Wenheim, 1980.
  Google Scholar

TANCHOUX N., LEITNER W., Handbook of Green Chemistry and Technology, Blackwell Oxfrod 2002.
  Google Scholar


Published
2008-01-02

Cited by

Paryjczak, T. (2008). Promoting Sustainability Through Green Chemistry, Part 2. Problemy Ekorozwoju, 3(1), 45–51. Retrieved from https://ph.pollub.pl/index.php/preko/article/view/4682

Authors

Tadeusz Paryjczak 

Instytut Chemii Ogólnej i Ekologicznej Politechniki Łódzkiej, 90-924 Łódź, ul. Żeromskiego 116, Poland Poland

Statistics

Abstract views: 15
PDF downloads: 11