Sustainable Mitigation of Greenhouse Gases Emissions
Wojciech Cel
Faculty of Environmental Engineering, Lublin University of Technology, Lublin (Poland)
Aneta Czechowska-Kosacka
Faculty of Environmental Engineering, Lublin University of Technology, Lublin (Poland)
Tao Zhang
Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (Poland)
Abstract
The emission and absorption fluxes of CO2 and CH4 in the environment have been characterized. It has been pointed out that the anthropogenic emission of CO2 amounts only to 3% of emissions from the natural sources. It has been also noted that increasing CO2 absorption of terrestrial ecosystems by 3% could inhibit the increase of CO2 concentration in the atmosphere. This means that mitigation of global warming by intensifying natural processes is a more sustainable solution than performing expensive changes in energy policy. Lowering the emission of methane, on the other hand, can be accomplished by utilizing fodder additives for ruminants and the process of microbiological methane oxidation in covering soil layers or biofilters.
Keywords:
greenhouse gases, CO2 emissions, sustainable developmentReferences
ALLSOPP M., SANTILLO D., JOHNSTON P., 2007, A scientific critique of oceanic iron fer-tilization as a climate change mitigation strat-egy, report GRL-TN-07-2007.
Google Scholar
AUMONT O., BOPP L., 2006, Globalizing results from ocean in situ iron fertilization studies, in: Global Biogeochemical Cycles, vol. 20, p. 2017-2032.
Google Scholar
B.P., 2015, Statistical World Energy Review, http://www.bp.com/statisticalreview/ (10.08.2015).
Google Scholar
BOADI D., BENCHAAR C., CHIQUETTE J., MASSE D., 2004, Mitigation strategies to re-duce enteric methane emissions from dairy cows: Update review, in: Canadian Journal of Animal Science, vol. 84, no 3, p. 319-332.
Google Scholar
BOGNER J., 2003, Global methane emissions from landfills: New methodology and annual estimates 1980-1996, in: Global Biogeochemical Cycles, vol. 17, no 2, p. 1065-1072.
Google Scholar
BOYD P.W. et al., 2000, A mesoscale phyto-plankton bloom in the polar Southern Ocean stimulated by iron fertilization, in: Nature, vol. 407, p. 695-702.
Google Scholar
CHOLEWA T., PAWŁOWSKI A., 2009, Sustainable Use of Energy in the Communal Sector, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 11, p. 1165-1177.
Google Scholar
COALE K. et al., 1996, A massive phytoplankton bloom inducted by an ecosystem-scale iron fertilisation experiment in the equatorial Pacific Ocean, in: Nature, vol. 383, p. 495-501.
Google Scholar
DUBEY G. et al., 2015, Carbon dioxide metabolism and ecological significance of enzyme complex systems in terrestrial ecosystem, in: Current Life Sciences, vol. 1 (2), p. 35-45.
Google Scholar
GAJ K., 2012, Carbon dioxide sequestration by Polish forest ecosystems, in: Forest Research Papers, vol. 73, p. 17-21.
Google Scholar
FALKOWSKI et al., 2000, The Global Carbon Cycle: A test of our knowledge of earth as a system, in: Science, vol. 290, no 5490, p. 291-296.
Google Scholar
GARBULSKY M.F. et al., 2008, Remote estimation of carbon dioxide uptake by a Mediter-ranean forest, in: Global Change Biology, vol. 14, p. 2860-2867.
Google Scholar
GORTE R. W., 2009, Carbon Sequestration in forest, in; Congressional Research Service, 7-5700, http://www.crs.gov, RL31432
Google Scholar
(10.08.2015).
Google Scholar
GOSIEWSKI K., PAWLACZYK A., JASCHIK M., 2010) Utylizacja metanu z powietrza wentylacyjnego kopalń węgla kamiennego w termicznym reaktorze rewersyjnym, in: Inż. Ap. Chem, vol. 49, p. 37-38.
Google Scholar
IPCC, 2007, IPCC Fourth Assessment Report: Climate Change, Working Group III: Mitiga-tion of Climate Change, http://www.ipcc.ch (10.08. 2015).
Google Scholar
IPCC, 2013, Report 2013, Carbon and other Biochemical Cycles, http://www.ipcc.ch (10.08. 2015).
Google Scholar
IPCC 2014, Report 2014, Carbon and other Biochemical Cycles, http://www.ipcc.ch (10.08. 2015).
Google Scholar
LINDZEN D., 2010, Global Warming: The Origin and Nature of the Alleged Scientific Consensus, in: Problemy Ekorozwoju/Problems of Sustainable Development, vol.5, no. 2, p. 13-28.
Google Scholar
MONTUSIEWICZ A., LEBIOCKA M., PAWŁOWSKA M., 2008, Characterization of the biomethanization process in selected waste mixtures, in: Archives of Environmental Protection, vol. 34, issue 3, p. 49-61.
Google Scholar
OLEJNIK J. et al., 2011, Oszacowanie strumieni dwutlenku węgla wymienianymi pomiędzy ekosystemami leśnym a atmosferą, Raport z projektu badawczego zleconego przez DGLP za okres styczeń 2008- grudzień 2011, Warsaw.
Google Scholar
OREN R. et al., 2001, Soil fertility limits carbon sequestration by forest ecosystem in a CO2 – enriched atmosphere, in: Nature, vol. 411, p. 469-472.
Google Scholar
PAWŁOWSKA M., 2008, Reduction of methane emission from landfills by its microbial oxidation in filter bed, in: Management of Pol-lutant Emission from Landfills and Sludge, eds. Pawlowska M., Pawlowski L., Taylor & Francis Group, London, 2008, 3-20.
Google Scholar
PAWŁOWSKI A., 2009, Teoretyczne uwarunkowania rozwoju zrównoważonego, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 11(2), p. 985-994.
Google Scholar
PAWŁOWSKI A., 2008, How many dimensions does sustainable development have?, in: Sustainable Development, vol. 16, no 2, March-April, p. 81-90.
Google Scholar
PAWŁOWSKI A., 2013, Sustainable Development and Globalisation, in: Problemy Ekorozwoju/Problems of Sustainable Development, vol. 8, no 2, p. 5-16.
Google Scholar
SCHEUTZ C, KJELDSEN P., BOGNER J.E., DE VISSCHER A., GEBERT J., HILGER H. A, HUBER-HUMER M., SPOKAS K., 2009, Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions, in: Waste Manage Resources, vol. 27, no. 5, p. 409-455.
Google Scholar
STASZEWSKA E., PAWŁOWSKA M., 2011, Characteristic of emissions from municipal waste landfills, in: Environment Protection Engineering, vol. 37, issue 4, p. 119-130.
Google Scholar
STĘPNIEWSKI W., PAWŁOWSKA M., 1996, A possibility to reduce methane emission from landfills by its oxidation in the soil cover, in: Chemistry for the Protection of the Environ-ment 2, Book, Series Environmental Science Research, vol. 51, p. 75-92.
Google Scholar
STREESE J., STEGMANN R., 2003, Microbial oxidation of methane from old landfills in bio-filtres, in: Waste Management, vol. 23, issue 7, p. 573-580.
Google Scholar
SZYSZKO J., 2015, Information on Nowy Przemysł, http://www.wnp.pl (10.08.2015).
Google Scholar
ULIASZ-BOCHEŃCZYK A., Mokrzycki E., 2015, Biomasa jako paliwo w energetyce, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, vol. 17, p. 900-913.
Google Scholar
ULIASZ-BOCHEŃCZYK A., E. MOKRZY-CKI E., 2005, Przegląd możliwości utylizacji ditlenku węgla, in: Wiertnictwo, Nafta, Gaz, vol. 22, p. 373-381.
Google Scholar
ZDEB M. Redukcja emisji metanu i węglowodorów aromatycznych ze składowisk odpadów w biofiltrze – badania polowe, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection vol. 17 (2), p. 1053-1073.
Google Scholar
Authors
Wojciech CelFaculty of Environmental Engineering, Lublin University of Technology, Lublin Poland
Authors
Aneta Czechowska-KosackaFaculty of Environmental Engineering, Lublin University of Technology, Lublin Poland
Authors
Tao ZhangKey Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 Poland
Statistics
Abstract views: 44PDF downloads: 29
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.