Antibiotics in the Environment as one of the Barriers to Sustainable Development

Joanna Lach


Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa (Poland)

Longina Stępniak


Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa (Poland)

Agnieszka Ociepa-Kubicka


Czestochowa University of Technology, Faculty of Management, Ul. Armii Krajowej 19b, 42-201 Częstochowa (Poland)


Abstract

The paper has analyzed the presence of antibiotics in crude (hospital, medicine production and municipal) waste water, treated waste water, surface water and drinking water across the world. The concentrations of antibiotics in medicine production waste water reached a level of up to 900 µ/dm3; in hospital waste water, up to 124 µ/dm3; and in municipal waste water, up to 64 µ/dm3. Antibiotic concentrations in treated waste water approached 260 ng/dm3. The presence of antibiotics in surface water has also been covered. The most often identified medicines were: Ciprofloxacin, Erythromycin, Norfloxacin, Sulfamethoxazole and Trimethoprim. The maximum antibiotic concentrations in surface water are as high as up to 2 µg/dm3. In the majority of cases, identified antibiotics occurred in concentrations from several to several dozen ng/dm3, and less often in several hundred ng/dm3. The presence of antibiotics in drinking water, similarly as for waste water, was identified worldwide, e.g. in China, USA, Germany, Canada, France. Very high antibiotic concentrations were noted in Guangzhou, China, which reached a level of up to 679.7 ng/dm3 (Ciprofloxacin), but also in the USA (Triclosan) – 734 ng/dm3). In the majority of instances, antibiotics are present in water in much lower concentrations. The consequence of environmental contamination with antibiotics is the drug resistance of many bacterial strains with the resultant deaths of 25 000 people in the European Union and 700 000 people across the globe. The other effects of the presence of antibiotics in the natural environment are not fully understood yet. For example, carcinogenic, teratogenic or mutagenic effects are attributed to these contaminants.


Keywords:

antibiotics, water pollution, drug resistance

ADAMEK E., et al., 2015, Efektywność procesów biodegradacji zastosowanych do usuwania leków przeciwbakteryjnych ze ścieków i wody rzecznej, in: Proceedings of ECOpole, vol. 9, no. 1, p. 155-162.
  Google Scholar

AHMAD M. et al., 2012, Role of hospital effluents in the contribution of antibiotics and antibiotic resistant bacteria to the aquatic environment, in: Pak. J. Nutr., vol.11, no. 12, p. 1177-1182.
  Google Scholar

ASHFAQ M. et al., 2016, Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan, in: Environ. Toxicol. Pharmacol., vol. 42, p. 6-22.
  Google Scholar

BARBUSIŃSKI K., NALEWAJEK T., 2011, Oporność szczepów Escherichia coli na wybrane antybiotyki w ściekach komunalnych, in: Gaz, Woda i Technika Sanitarna, vol. 11, p. 442-446.
  Google Scholar

BBOSA G.S., MWEBAZA N., ODDA J., et al., 2014, Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance, in: Health (Irvine Calif), vol. 6, p. 410-425.
  Google Scholar

BIELAS S., LACH J., 2014, Zanieczyszczenie środowiska wodnego antybiotykami, in: Technologia Wody, vol. 3, no. 35, p. 23-29.
  Google Scholar

BIELIŃSKA M., NAŁĘCZ-JAWECKI G., 2009, Zanieczyszczenie środowiska przyrodniczego lekami. Ocena toksyczności trzech fluorochinolonów dla rzęsy drobnej Lemna Minor, in: Biul. Wydz. Farm. WUM, vol. 4, no. 24-30.
  Google Scholar

BIERNASIAK J., ŚLIŻEWSKA K., LIBUDZISZ Z., 2010, Negatywne skutki stosowania antybiotyków, in: Postępy Nauk Rolniczych, vol. 3, p. 105-117.
  Google Scholar

BROWN K.D. et al., 2006, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, in: Sci Total Environ., vol. 366, p. 772-783.
  Google Scholar

BRUTON L.L., LAZO J.S., PARKER K.L. 2007, Farmakologia Goodmana & Gilmana, Wydawnictwo Czelej, Lublin.
  Google Scholar

BULL R.J. et al., 2011, Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater, in: Regul. Toxicol. Pharmacol., vol. 60, np. 1, p. 1-19.
  Google Scholar

CALZA P. et al. 2013, Fate of Selected Pharmaceuticals in River Waters, in: Environ. Sci. Pollut. Res. Int. Vol. 20, no. 4, 2262-2270.
  Google Scholar

CARMOSINI, N., LEE, L.S., 2009. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, in: Chemosphere, vol. 77, no. 6, p. 813-820.
  Google Scholar

CARVALHO I.T. SANTOS C.L., 2016, Antibiotics in the aquatic environments: A review of the European scenario, in: Environ. Int., vol. 94, p. 736-757.
  Google Scholar

CHANG X. et. al. 2010, Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China, in: Environ. Pollut., vol.158, no. 5, p. 1444-1450.
  Google Scholar

DEO R.P., HALDEN R.U., 2013, Pharmaceuticals in the Built and Natural Water Environment of the United States, in: Water, vol. 5, no.3, p. 1346-1365.
  Google Scholar

DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in:. Mol. Biol. Rev. vol. 74, p. 417-433.
  Google Scholar

DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in: Mol. Biol. Review, vol. 74, p. 413-433.
  Google Scholar

DUONG H.A. et al., 2008, Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam, in: Chemosphere, vol.72, no. 6, p. 968-973.
  Google Scholar

ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals, 2015, in: EFSA J., vol. 13, p. 4006-4114.
  Google Scholar

FENT K., WESTON A.A., CAMINADA D., 2006, Ecotoxicology of human pharmaceuticals, in: Aquatic Toxicology, vol. 76, no. 2, p. 122-159.
  Google Scholar

FRENCH, G.L., 2010. The continuing crisis in antibiotic resistance, in: Int. J. Antimicrob. Agents., vol. 36, no. 3, p. 3-7.
  Google Scholar

GAFFNEY V.D.J. et al., 2014, Occurrence of pharmaceuticals in a water supply system and related human health risk assessment, in: Water Res., vol. 72, p. 199-210.
  Google Scholar

GOLOVKO O. et al., 2014, Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant, in: Chemosphere, vol. 111, p. 418-426.
  Google Scholar

GRACIA-LOR E. et al., 2012, Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia, in: Chemosphere, vol.87, no. 5, p. 453-462.
  Google Scholar

GRENNI P., ANCONA V., CARACCIOLO A.B., 2017, Ecological effects of antibiotics on natural ecosystems: A review, in: Microchemical Journal.
  Google Scholar

GROSS, M., 2013, Antibiotics in crisis, in: Curr. Biol., vol. 23, p. R1063-R1065.
  Google Scholar

GUERRA P. et al., 2014, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, in: Sci Total Environ., vol. 473-474, p. 235-243.
  Google Scholar

HALLING-SORENSEN B. et al., 1998, Occurrence, fate, and effects of pharmaceutical substances in the environment – a review, in: Chemosphere, vol. 36, no. 2, p. 357-393.
  Google Scholar

HEBERER T., 2002, Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data, in: Toxicol. Lett., vol. 131, p. 5-17.
  Google Scholar

JANIEC W., 2005, Kompendium farmakologii, Wydawnictwo Lekarskie PZWL, Warsaw.
  Google Scholar

JIA A., WAN Y., XIAO Y., HU J., 2012, Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, in: Water Res., vol.46 no.2, p. 387-394.
  Google Scholar

JANIEC R., CEGIEŁA U., FOLWARCZNA J., 2010, Kompendium Farmakologii, Wydawnictwo Lekarskie PZWL.
  Google Scholar

JONES O.A., LESTER J.N., VOULVOULIS N., 2005, Pharmaceuticals: a threat to drinking water? in: Trends Biotechnol., vol. 23, p. 163-167.
  Google Scholar

KASPRZYK-HORDERN B., DINSDALE R.M., GUWY A.J., 2009, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, in: Water Res. Vol. 43, no. 2, p. 363-380.
  Google Scholar

KEMPER N., 2008, Veterinary antibiotics in the aquatic and terrestrial environment, in: Ecol. Indic., no. 8, p. 1-13.
  Google Scholar

KLEYWEGT S. et al., 2011, Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada--occurrence and treatment efficiency, in: Sci. Total Environ., vol. 409, no. 8, p. 1481-1488.
  Google Scholar

KOLPIN D.W. et al., 2002, Pharmaceuticals, hormones, and others organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance, in: Environ. Sci. Technol., vol. 36, p. 1202-1211.
  Google Scholar

KÜMMERER K., 2009, Antibiotics in the aquatic environment – A review – Part I, in: Chemosphere, vo. 75, p. 417-434.
  Google Scholar

LARSSON D.G.J., DE PEDRO C., PAXEUS N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals, in: J. Hazard. Mater, vol. 148, no. 3, p. 751-755.
  Google Scholar

LA TORRE A., et al., 2012, An approach for mapping the vulnerability of European Union Soils to Antibiotic Contamination, in: Science of the Total Environment, 414, p. 672-679.
  Google Scholar

LI X., WATANABE N. et al., 2013, Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California, in: Environ Monit Assess., vol. 186, p. 1253-1260.
  Google Scholar

LI W.C., 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, in: Environ. Pollut., vol. 187, p. 193-201.
  Google Scholar

LI W., SHI Y., GAO L., LIU J., CAI Y., 2013, Occurrence and removal of antibiotics in amunicipal wastewater reclamation plant in Beijing, China, in: Chemosphere, vol. 92, no. 435-444.
  Google Scholar

LIEWSKA K., BIERNASIAK J., LIBUDZISZ Z., 2006, Probiotyki jako alternatywa dla antybiotyków, in: Zeszyty Naukowych Politechniki Łódzkiej, z. 70, nr 984, p. 79-91.
  Google Scholar

LINDBERG R. et al., 2004, Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards, in: Chemosphere, vol. 57, no. 10, p. 1479-1488.
  Google Scholar

LOCATELLI M.A., SODRE F.F., JARDIM W.F., 2011, Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry, in: Arch Environ Contam Toxicol., vol. 60, no. 3, p. 385-393.
  Google Scholar

LOOS R., WOLLGAST J., HUBER T., HANKE G., 2007, Polar Herbicides, Pharmaceutical Products, Perfluorooctanesulfonate (PFOS), Perfluorooctanoate (PFOA), and Nonylphenol and Its Carboxylates and Ethoxylates in Surface and Tap Waters Around Lake Maggiore in Northern Italy, in: Anal. Bioanal. Chem., vol. 387, np. 4., p. 1469-1478.
  Google Scholar

LORAINE G, PETTIGROVE M., 2006, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California, in: Environ. Sci. Technol., vol. 40, p. 687-695.
  Google Scholar

MADUREIRA V.T., BARREIRO J.C., ROCHA M.J., ROCHA E., 2010, Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal), in: Sci. Total Environ., vol. 408, no. 22, p. 5513-5520.
  Google Scholar

MANAGAKI S. et al., 2007, Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta, in: Environ Sci Technol.,vol. 41, p. 8004-8010.
  Google Scholar

MARTÍNEZ J.L., 2009, Environmental pollution by antibiotics and by antibiotic resistance determinants, in: Environ. Pollut., vol. 157, p. 2893-2902.
  Google Scholar

MED-EUWI, 2007, Mediterranean wastewater reuse report.
  Google Scholar

MICHAEL I. et al. 2013, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, in: Water Res., vol. 47, p. 957-995.
  Google Scholar

MOMPELAT S., LE BOT B., THOMAS O., 2009, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, in: Environ. Int., vol. 35, p. 803-814;
  Google Scholar

MURATA A., TAKADA H., MUTOH K., HOSODA H., 2011, Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers, in: Sci. Total Environ., vol. 409, no. 24., p. 5305-5312.
  Google Scholar

OECD, 2015, Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action, OECD Paris.
  Google Scholar

NÖDLER K., LICHA T., FISCHER S., WAGNER B., 2011, A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany), in: Applied Geochemistry, vol. 26, no. 12, p. 2172-2180.
  Google Scholar

O'NEILL J., 2014, Tackling a crisis for the health and wealth of nations, in: Antimicrobial Resistance, http://amrreview.org/Publications, (01.06.2017).
  Google Scholar

OSEK J., WIECZOREK K., 2015, Spożycie leków przeciwbakteryjnych w Europie i występowanie oporności na te leki bakterii izolowanych od ludzi, zwierząt i z żywności w 2012 r., in: Życie Weterynaryjne, vol. 90, no. 9, p. 601-603.
  Google Scholar

PADHYE L.P., YAO H., KUNG'U F.T., HUANG C.H., 2014, Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant, in: Water Res., vol. 51, p. 266-276.
  Google Scholar

REEMTSMA T., JEKEL M., 2006, Organic pollutants in the water cycle, WILEY-VCH, Weinheim.
  Google Scholar

SANTOSA L.H. et al., 2010, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, in: J. Hazard. Mater. vol. 175, no. 45-95.
  Google Scholar

SOKÓŁ A., 2013, Badania szybkości degradacji wybranych leków w układach modelowych i w próbkach wód rzecznych, Uniwersytet Białostocki.
  Google Scholar

STEC M., 2015, Antibiotics in aquaculture, in: Słupskie Prace Biologiczne, no. 12 p. 209-216.
  Google Scholar

SUKUL P, SPITELLER M., 2006, Sulfonamides in the environment as veterinary drugs, in: Rev Environ Contm Toxicol., vol. 187, p. 67-101.
  Google Scholar

TAMTAM F., MERCIER F., LE BOT B., EURIN J., 2008, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, in: Science of The Total Environment, vol. 393, no. 1, p. 84-95.
  Google Scholar

TERNES T., 1998, Occurrence of drugs in German sewage treatment plants and rivers, in: Water Research, vol. 32, p. 3245-3260.
  Google Scholar

TERNES T., 2001, Analytical methods for the determination of pharmaceuticals in aqueous environmental samples, in: Trends in Analytical Chemistry, vol. 20, p. 419-433.
  Google Scholar

VERGEYNST L. et al., 2015. Multiresidue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study, in: Chemosphere vol. 119, p. S2-S8.
  Google Scholar

VERLICCHI P. et al., 2012, Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, in: Sci. Total Environ., vol. 430, p. 109-118.
  Google Scholar

VERLICCHI P., AL AUKIDY M., ZAMBELLO E., 2012, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review, in: Sci. Total Envirom., vol. 429, p. 123-155.
  Google Scholar

VIENO N.M., TUHKANEN T., KRONBERG L., 2006, Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection, in: J. Chromatogr. A., vol. 1134, p. 101-111.
  Google Scholar

WANG C.A. et al., 2011, Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry, in: Water Res. vol. 45, p. 1818-1828.
  Google Scholar

WATKINSON J., MURBY E., COSTANZO S., 2007, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling, in: Water Res., vol. 41, p. 4164-4176.
  Google Scholar

WATKINSON J., MURBY E.J., KOLPIN D.W., COSTANZO S.D., 2009, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, in: Sci. Total Environ., vol. 407, no. 8, p. 2711-2723.
  Google Scholar

WEI Y. et al. 2014, Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry in: Front. Environ. Sci. Eng., vol. 8 no. 3, p. 357-371.
  Google Scholar

WHO, 2014, Antimicrobial resistance: Global report on surveillance, WHO Geneva.
  Google Scholar

WOLLENBERGER L., HALLING-SØRENSEN B., KUSK K.O., 2000, Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, in: Chemosphere, vol. 40, p. 723-730.
  Google Scholar

WU M. et al., 2016, Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water, in: Ecotoxicol. Environ. Safety, vol. 132, p. 132-139.
  Google Scholar

Ye Z.Q., WEINBERG H.S., MEYER M.T., 2007, Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry, in: Anal. Chem., vol. 79, no. 3, p. 1135-1144.
  Google Scholar

YIRUHAN et al., 2010, Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao, Environ. Pollut., vol. 158, p. 2350-2358.
  Google Scholar

YU F., LI Y., HAN S, MA J., 2016, Adsorptive removal of antibiotics from aqueous solution using carbon materials, in: Chemosphere, vol. 153, p. 365-385.
  Google Scholar

ZHAO S. et al., 2016, Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China, in: Sci. Total Environ., vol. 569–570, p.1350-1358.
  Google Scholar

ZHOU L.J. et al., 2011, Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China, in: Environmental Pollution., vol. 159, no.7, p. 1877-1885.
  Google Scholar

ZHENG Q. et al., 2012, Occurrence and distribution of antibiotics in the Beibu Gulf, China: impacts of river discharge and aquaculture activities, in: Marine Environmental Research, vol. 78, p. 26-33.
  Google Scholar

ZUCCATO E. et al., 2006, Pharmaceuticals in the Environment in Italy: Causes, Occurrence, Effects and Control, in: Environ Sci & Pollut Res., vol. 13, no.1, 15-21.
  Google Scholar

ŻABICKA D., LITERACKA E., BOJARSKA K., 2012, MDR, XDR, PDR – jednolite, międzynarodowe definicje nabytej oporności drobnoustrojów na antybiotyki, in: Aktualności NPOA, vol. 3, p. 1-7.
  Google Scholar

Download


Published
2018-01-02

Cited by

Lach, J., Stępniak, L., & Ociepa-Kubicka, A. (2018). Antibiotics in the Environment as one of the Barriers to Sustainable Development. Problemy Ekorozwoju, 13(1), 197–207. Retrieved from https://ph.pollub.pl/index.php/preko/article/view/5052

Authors

Joanna Lach 

Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa Poland

Authors

Longina Stępniak 

Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa Poland

Authors

Agnieszka Ociepa-Kubicka 

Czestochowa University of Technology, Faculty of Management, Ul. Armii Krajowej 19b, 42-201 Częstochowa Poland

Statistics

Abstract views: 78
PDF downloads: 46