The Impact of Selected Biotechnology Processes for Sustainable Development of the Environment and Human Life
Aleksandra Badora
aleksandra.badora@up.lublin.plDepartment of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland (Poland)
Magdalena Celińska
Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland (Poland)
Abstract
The aim of this work was to show what effect biotechnology can have on the quality of human life, and on the condition of the natural environment. A number of biotechnological processes have been analyzed that can significantly improve the quality of human life, while at the same time caring for the natural environment. The prospects for the development of these processes on the global and Polish market were also analyzed. As it turned out, some of the process analyzed need further refinement to be implemented on a global scale, while others may be successfully implemented in the coming years, contributing to the improvement of the quality of such aspects of human life high-quality food products, health protection and good public health. Biotechnological processes may also have wide application in the protection and remediation of the natural environment.
Keywords:
biotechnology, human life, environmental protection, GMOReferences
ANSELL E., MCGINN E., 2009, GM stockfeed in Australia: economic issues for producers and consumer, Research report prepared for the Australian Government Department of Agriculture, Fisheris and Forestry, Canberra, https://www.australianstockreport.com.au/asx-build-wealth?campaignid.
Google Scholar
BAILLIE C. A., BARBER A. H., ZHAO Q., WAGNER H. D., 2004, Characterization of E-glass–polypropylene interfaces using carbon nanotubes as strain sensors, in: Composites Science and Technology, 64(13-14), p. 1915-1919.
DOI: https://doi.org/10.1016/j.compscitech.2004.02.004
Google Scholar
BETYNA M., 2017, Bioengineering in cosmetology – the overview of present state and future prospects, in: World Scientific News, 89, 199-207.
Google Scholar
CHORĄŻY M., LISOWSKA K., 2011, Dlaczego mówimy nie dla GMO w polskim rolnictwie, in: Nauka, 4, 175-180.
Google Scholar
CORTES P., DENG S., SMITH G. B., 2009, The adsorption properties of bacillus atrophaeus spores on single-wall carbon nanotubes, in: Journal of Sensors, article no 131628.
DOI: https://doi.org/10.1155/2009/131628
Google Scholar
DALTON A. B., MUÑOZ E., COLLINS S., KOZLOV M., RAZAL J., COLEMAN J. N., KIM B. G., EBRON V. H., SELVIDGE M., FERRARIS J. P., BAUGHMAN R. H., 2004, Multifunctional Carbon Nanotube Composite Fibers, in: Journal Composite Materials, 44(11), p. 1305-1316.
Google Scholar
DHILLON A., PAINULI R., KUMAR D., 2018, Carbon Nanostructures: Applications and Perspectives for a Green Future, in: Nanocomposites for Pollution Control, p. 249-285, Pan Stanford.
DOI: https://doi.org/10.1201/b22390-8
Google Scholar
DOROCKI S., JASTRZĘBSKI J., 2012, Regionalne zróżnicowanie rozwoju biotechnologii w Europie, in: Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 20, p. 67-94.
DOI: https://doi.org/10.24917/20801653.20.5
Google Scholar
DUA M., SINGH A., SETHUNATHAN N., JOHRI A., 2002, Biotechnology and bioremediation: successes and limitations, in: Applied Microbiology and Biotechnology, 59(2-3), p. 143-152.
DOI: https://doi.org/10.1007/s00253-002-1024-6
Google Scholar
ENDO M., NATSUKI T., Q. Q. NI, 2008, Analysis of the vibration characteristics of double-walled carbon nanotubes, in: Carbon, 46(12), p. 1570-1573.
DOI: https://doi.org/10.1016/j.carbon.2008.06.058
Google Scholar
FAGAN J., KASIGAWI T., DOUGLAS J. F., YAMAMOTO K., HECKERT A. N., LEIGH S. D., OBRZUT J., DU F., LIN-GIBSON S., MU M., WINEY K. I., HAGGENMULLER R., 2007, Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites, in: Polymer, 48(16), 4855-4866.
DOI: https://doi.org/10.1016/j.polymer.2007.06.015
Google Scholar
FERRAI M., GUGLIELMI G., ANDREOTTOLA G., 2010, Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment, in: Environmental Modelling & Software, 25(5), p. 626-632.
DOI: https://doi.org/10.1016/j.envsoft.2009.05.005
Google Scholar
FUNDUSZ LUDNOŚCIOWY NARODÓW ZJEDNOCZONYCH, 2016, Report from the day December 1, 2016.
Google Scholar
GĘBSKI J., KOSICKA-GĘBSKA M., 2014, Wpływ wyróżników jakości na zachowania konsumentów mięsa, in: Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 16(1), p. 98-104.
Google Scholar
GRAY D. H., SOTIR R. B., 1996, Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control, John Wiley & Sons.
Google Scholar
HWANG S. W., ZACHARIA R., RATHER S., NAHM K. S., 2007a, Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes, in: Chemical Physics Letters, 434(4–6), p. 286-291.
DOI: https://doi.org/10.1016/j.cplett.2006.12.022
Google Scholar
HWANG S. K., JIN H, KWON J. T., CHANG S. H., KIM T. H., CHO C. S., LEE K. H., YOUNG M. R., COLBURN N. H., BECK JR G. R., YANG H. S., CHO M. H., 2007b, Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice, in: Gene Therapy, 14; p. 1353-1361.
DOI: https://doi.org/10.1038/sj.gt.3302983
Google Scholar
JAMES C., 2010, Global status of commercialized Biotech/ GM Crops, in: ISAAA Brief, 42. ISAAA, Ithaca, NY.
Google Scholar
JORDAN E., MARTIN J., HILMY HAKEEM M., SURYAJAYA T., NUGRAHA T., TAUFIQURRAHMI LISTYORIN N., 2016, A review of nanotechnology application for seawater desalination proces, in: Journal of Technology, Maret, 1(2), p. 155-179.
Google Scholar
KOSICKA-GĘBSKA M., GĘBSKI J., 2008, Żywność zmodyfikowana genetycznie-bariery i możliwości rozwoju w opinii respondentów, in: Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 10(1), p. 182-185.
Google Scholar
KUNDZEWICZ Z. W., JUDA-REZLER K., 2010, Zagrożenia związane ze zmianami klimatu, in: Nauka, 4, p. 69-76.
Google Scholar
MALEPSZY S., 2006, Uwagi o wprowadzeniu do rolnictwa w Polsce odmian genetycznie zmodyfikowanych, in: Postępy Nauk Rolniczych, 6, p. 3-15.
Google Scholar
MALEPSZY S., ORLIKOWSKA T., ORCZYK W., MAJEWSKA-SAWKA A., 2009, Rośliny genetycznie zmodyfikowane., in: Biotechnologia roślin, ed. Malepszy S., PWN, Warszawa, p. 455-544.
Google Scholar
MORGAN R. P., RICKSON R. J., 2003, Slope stabilization and erosion control: a bioengineering approach, Taylor & Francis.
DOI: https://doi.org/10.4324/9780203362136
Google Scholar
MOSTAFAVI A., SHAMSPUR T. 2009. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au (III) and Mn (II), in: Journal of Hazardous Materials, 168(2-30), p. 1548-1553.
DOI: https://doi.org/10.1016/j.jhazmat.2009.03.028
Google Scholar
NIEMROWICZ-SZCZYTT K., BARTOSZEWSKI G., GNIEWOSZ M., ORCZYK W., ZWIERZCHOWSI L., 2012, GMO w świetle najnowszych badań. Doskonalenie organizmów na potrzeby człowieka, Wydawnictwo SGGW, Warsaw.
Google Scholar
ONG H. G., LI B., CAO X., CHEAH J. W., ZHOU X., YIN Z., LI H., WANG J., BOEY F., HUANG W., ZHANG H., 2010, All-Carbon Electronic Devices Fabricated by Directly Grown Single Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes, Wiley Online Library.
Google Scholar
POSKROBKO B., 2011, Ekonomia zrównoważonego rozwoju w świetle kanonów nauki, Wydawnictwo WSE w Białymstoku, Białystok.
Google Scholar
PRZYBECKI Z., PAWEŁKOWICZ M. WÓYCICKI R., 2010, Sekwencjonowanie genomów i rozwój biotechnologii. Prace przeglądowe, in: Biotechnologia, 4 (91), p. 9-23.
Google Scholar
ROBERTSON F., SAMY M., 2015, Factors affecting the diffusion of integrated reporting – A UK FTSE 100 perspective. Sustainability Accounting, in: Management and Policy Journal, 6(2).
DOI: https://doi.org/10.1108/SAMPJ-07-2014-0044
Google Scholar
SAVAGE, N., DIALLO, M. S., 2005, Nanomaterials and water purification: opportunities and challenges, in: Journal of Nanoparticle Research, 7(4-5), p. 331-342.
DOI: https://doi.org/10.1007/s11051-005-7523-5
Google Scholar
SKOWROŃSKI A., 2006, Zrównoważony rozwój perspektywą dalszego postępu cywilizacyjnego, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 1(2), p. 47-57.
Google Scholar
SMITH L. H., KITANIDIS P. K., MCCARTY P. L., 1997, Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture, in: Biotechnology and Bioengineering, 53(3), p. 320-331.
DOI: https://doi.org/10.1002/(SICI)1097-0290(19970205)53:3<320::AID-BIT11>3.0.CO;2-O
Google Scholar
SRIVASTAVA A., SRIVASTAVA O. N., TALAPATRA S., VAJTAI R., AJAYAN P. M., 2004, Carbon nanotube filters, in: Nature Materials, 3, p. 610-614.
DOI: https://doi.org/10.1038/nmat1192
Google Scholar
TWARDOWSK, T. , WĘGLEŃSKI P., 2012, The official position of the Biotechnology Committee of the Polish Academy of Sciences on the commercial use of GMOs. New technologies as an opportunity for the Polish economy: GMOs for industry and agriculture, in: BioTechnologia.
DOI: https://doi.org/10.5114/bta.2012.46564
Google Scholar
WANG X., WAJE M., YAN Y., 2005, CNT-based electrodes with high efficiency for PEMFCs, in: Electrochemical and Solid-State Letters, 8(1), p. 42-44.
DOI: https://doi.org/10.1149/1.1830397
Google Scholar
WANG L. K., TAY J. H., TAY S. T. L., HUNG Y. T., 2010, Environmental Bioengineering, 11, Springer.
DOI: https://doi.org/10.1007/978-1-60327-031-1
Google Scholar
WARACZEWSKA Z., NIEWIADOMSKA A., GRZYB A., 2018, Wybrane metody bioremediacji in situ z wykorzystaniem mikroorganizmów. Woda-Środowisko-Obszary Wiejskie, Falenty.
Google Scholar
WÓJCIK P., TOMASZOWSKA B., 2005, Biotechnologia w remediacji zanieczyszczeń organicznych. Prace przeglądowe, in: Biotechnologia, 4(71), p. 156-172.
Google Scholar
Authors
Aleksandra Badoraaleksandra.badora@up.lublin.pl
Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland Poland
Authors
Magdalena CelińskaDepartment of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland Poland
Statistics
Abstract views: 55PDF downloads: 19
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.