The Impact of Selected Biotechnology Processes for Sustainable Development of the Environment and Human Life

Aleksandra Badora

aleksandra.badora@up.lublin.pl
Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland (Poland)

Magdalena Celińska


Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland (Poland)

Abstract

The aim of this work was to show what effect biotechnology can have on the quality of human life, and on the condition of the natural environment. A number of biotechnological processes have been analyzed that can significantly improve the quality of human life, while at the same time caring for the natural environment. The prospects for the development of these processes on the global and Polish market were also analyzed. As it turned out, some of the process analyzed need further refinement to be implemented on a global scale, while others may be successfully implemented in the coming years, contributing to the improvement of the quality of such aspects of human life high-quality food products, health protection and good public health. Biotechnological processes may also have wide application in the protection and remediation of the natural environment.


Keywords:

biotechnology, human life, environmental protection, GMO

ANSELL E., MCGINN E., 2009, GM stockfeed in Australia: economic issues for producers and consumer, Research report prepared for the Australian Government Department of Agriculture, Fisheris and Forestry, Canberra, https://www.australianstockreport.com.au/asx-build-wealth?campaignid.
  Google Scholar

BAILLIE C. A., BARBER A. H., ZHAO Q., WAGNER H. D., 2004, Characterization of E-glass–polypropylene interfaces using carbon nanotubes as strain sensors, in: Composites Science and Technology, 64(13-14), p. 1915-1919.
DOI: https://doi.org/10.1016/j.compscitech.2004.02.004   Google Scholar

BETYNA M., 2017, Bioengineering in cosmetology – the overview of present state and future prospects, in: World Scientific News, 89, 199-207.
  Google Scholar

CHORĄŻY M., LISOWSKA K., 2011, Dlaczego mówimy nie dla GMO w polskim rolnictwie, in: Nauka, 4, 175-180.
  Google Scholar

CORTES P., DENG S., SMITH G. B., 2009, The adsorption properties of bacillus atrophaeus spores on single-wall carbon nanotubes, in: Journal of Sensors, article no 131628.
DOI: https://doi.org/10.1155/2009/131628   Google Scholar

DALTON A. B., MUÑOZ E., COLLINS S., KOZLOV M., RAZAL J., COLEMAN J. N., KIM B. G., EBRON V. H., SELVIDGE M., FERRARIS J. P., BAUGHMAN R. H., 2004, Multifunctional Carbon Nanotube Composite Fibers, in: Journal Composite Materials, 44(11), p. 1305-1316.
  Google Scholar

DHILLON A., PAINULI R., KUMAR D., 2018, Carbon Nanostructures: Applications and Perspectives for a Green Future, in: Nanocomposites for Pollution Control, p. 249-285, Pan Stanford.
DOI: https://doi.org/10.1201/b22390-8   Google Scholar

DOROCKI S., JASTRZĘBSKI J., 2012, Regionalne zróżnicowanie rozwoju biotechnologii w Europie, in: Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego, 20, p. 67-94.
DOI: https://doi.org/10.24917/20801653.20.5   Google Scholar

DUA M., SINGH A., SETHUNATHAN N., JOHRI A., 2002, Biotechnology and bioremediation: successes and limitations, in: Applied Microbiology and Biotechnology, 59(2-3), p. 143-152.
DOI: https://doi.org/10.1007/s00253-002-1024-6   Google Scholar

ENDO M., NATSUKI T., Q. Q. NI, 2008, Analysis of the vibration characteristics of double-walled carbon nanotubes, in: Carbon, 46(12), p. 1570-1573.
DOI: https://doi.org/10.1016/j.carbon.2008.06.058   Google Scholar

FAGAN J., KASIGAWI T., DOUGLAS J. F., YAMAMOTO K., HECKERT A. N., LEIGH S. D., OBRZUT J., DU F., LIN-GIBSON S., MU M., WINEY K. I., HAGGENMULLER R., 2007, Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites, in: Polymer, 48(16), 4855-4866.
DOI: https://doi.org/10.1016/j.polymer.2007.06.015   Google Scholar

FERRAI M., GUGLIELMI G., ANDREOTTOLA G., 2010, Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment, in: Environmental Modelling & Software, 25(5), p. 626-632.
DOI: https://doi.org/10.1016/j.envsoft.2009.05.005   Google Scholar

FUNDUSZ LUDNOŚCIOWY NARODÓW ZJEDNOCZONYCH, 2016, Report from the day December 1, 2016.
  Google Scholar

GĘBSKI J., KOSICKA-GĘBSKA M., 2014, Wpływ wyróżników jakości na zachowania konsumentów mięsa, in: Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 16(1), p. 98-104.
  Google Scholar

GRAY D. H., SOTIR R. B., 1996, Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control, John Wiley & Sons.
  Google Scholar

HWANG S. W., ZACHARIA R., RATHER S., NAHM K. S., 2007a, Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes, in: Chemical Physics Letters, 434(4–6), p. 286-291.
DOI: https://doi.org/10.1016/j.cplett.2006.12.022   Google Scholar

HWANG S. K., JIN H, KWON J. T., CHANG S. H., KIM T. H., CHO C. S., LEE K. H., YOUNG M. R., COLBURN N. H., BECK JR G. R., YANG H. S., CHO M. H., 2007b, Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice, in: Gene Therapy, 14; p. 1353-1361.
DOI: https://doi.org/10.1038/sj.gt.3302983   Google Scholar

JAMES C., 2010, Global status of commercialized Biotech/ GM Crops, in: ISAAA Brief, 42. ISAAA, Ithaca, NY.
  Google Scholar

JORDAN E., MARTIN J., HILMY HAKEEM M., SURYAJAYA T., NUGRAHA T., TAUFIQURRAHMI LISTYORIN N., 2016, A review of nanotechnology application for seawater desalination proces, in: Journal of Technology, Maret, 1(2), p. 155-179.
  Google Scholar

KOSICKA-GĘBSKA M., GĘBSKI J., 2008, Żywność zmodyfikowana genetycznie-bariery i możliwości rozwoju w opinii respondentów, in: Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 10(1), p. 182-185.
  Google Scholar

KUNDZEWICZ Z. W., JUDA-REZLER K., 2010, Zagrożenia związane ze zmianami klimatu, in: Nauka, 4, p. 69-76.
  Google Scholar

MALEPSZY S., 2006, Uwagi o wprowadzeniu do rolnictwa w Polsce odmian genetycznie zmodyfikowanych, in: Postępy Nauk Rolniczych, 6, p. 3-15.
  Google Scholar

MALEPSZY S., ORLIKOWSKA T., ORCZYK W., MAJEWSKA-SAWKA A., 2009, Rośliny genetycznie zmodyfikowane., in: Biotechnologia roślin, ed. Malepszy S., PWN, Warszawa, p. 455-544.
  Google Scholar

MORGAN R. P., RICKSON R. J., 2003, Slope stabilization and erosion control: a bioengineering approach, Taylor & Francis.
DOI: https://doi.org/10.4324/9780203362136   Google Scholar

MOSTAFAVI A., SHAMSPUR T. 2009. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au (III) and Mn (II), in: Journal of Hazardous Materials, 168(2-30), p. 1548-1553.
DOI: https://doi.org/10.1016/j.jhazmat.2009.03.028   Google Scholar

NIEMROWICZ-SZCZYTT K., BARTOSZEWSKI G., GNIEWOSZ M., ORCZYK W., ZWIERZCHOWSI L., 2012, GMO w świetle najnowszych badań. Doskonalenie organizmów na potrzeby człowieka, Wydawnictwo SGGW, Warsaw.
  Google Scholar

ONG H. G., LI B., CAO X., CHEAH J. W., ZHOU X., YIN Z., LI H., WANG J., BOEY F., HUANG W., ZHANG H., 2010, All-Carbon Electronic Devices Fabricated by Directly Grown Single Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes, Wiley Online Library.
  Google Scholar

POSKROBKO B., 2011, Ekonomia zrównoważonego rozwoju w świetle kanonów nauki, Wydawnictwo WSE w Białymstoku, Białystok.
  Google Scholar

PRZYBECKI Z., PAWEŁKOWICZ M. WÓYCICKI R., 2010, Sekwencjonowanie genomów i rozwój biotechnologii. Prace przeglądowe, in: Biotechnologia, 4 (91), p. 9-23.
  Google Scholar

ROBERTSON F., SAMY M., 2015, Factors affecting the diffusion of integrated reporting – A UK FTSE 100 perspective. Sustainability Accounting, in: Management and Policy Journal, 6(2).
DOI: https://doi.org/10.1108/SAMPJ-07-2014-0044   Google Scholar

SAVAGE, N., DIALLO, M. S., 2005, Nanomaterials and water purification: opportunities and challenges, in: Journal of Nanoparticle Research, 7(4-5), p. 331-342.
DOI: https://doi.org/10.1007/s11051-005-7523-5   Google Scholar

SKOWROŃSKI A., 2006, Zrównoważony rozwój perspektywą dalszego postępu cywilizacyjnego, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 1(2), p. 47-57.
  Google Scholar

SMITH L. H., KITANIDIS P. K., MCCARTY P. L., 1997, Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture, in: Biotechnology and Bioengineering, 53(3), p. 320-331.
DOI: https://doi.org/10.1002/(SICI)1097-0290(19970205)53:3<320::AID-BIT11>3.0.CO;2-O   Google Scholar

SRIVASTAVA A., SRIVASTAVA O. N., TALAPATRA S., VAJTAI R., AJAYAN P. M., 2004, Carbon nanotube filters, in: Nature Materials, 3, p. 610-614.
DOI: https://doi.org/10.1038/nmat1192   Google Scholar

TWARDOWSK, T. , WĘGLEŃSKI P., 2012, The official position of the Biotechnology Committee of the Polish Academy of Sciences on the commercial use of GMOs. New technologies as an opportunity for the Polish economy: GMOs for industry and agriculture, in: BioTechnologia.
DOI: https://doi.org/10.5114/bta.2012.46564   Google Scholar

WANG X., WAJE M., YAN Y., 2005, CNT-based electrodes with high efficiency for PEMFCs, in: Electrochemical and Solid-State Letters, 8(1), p. 42-44.
DOI: https://doi.org/10.1149/1.1830397   Google Scholar

WANG L. K., TAY J. H., TAY S. T. L., HUNG Y. T., 2010, Environmental Bioengineering, 11, Springer.
DOI: https://doi.org/10.1007/978-1-60327-031-1   Google Scholar

WARACZEWSKA Z., NIEWIADOMSKA A., GRZYB A., 2018, Wybrane metody bioremediacji in situ z wykorzystaniem mikroorganizmów. Woda-Środowisko-Obszary Wiejskie, Falenty.
  Google Scholar

WÓJCIK P., TOMASZOWSKA B., 2005, Biotechnologia w remediacji zanieczyszczeń organicznych. Prace przeglądowe, in: Biotechnologia, 4(71), p. 156-172.
  Google Scholar

Download


Published
2020-01-02

Cited by

Badora, A., & Celińska, M. (2020). The Impact of Selected Biotechnology Processes for Sustainable Development of the Environment and Human Life. Problemy Ekorozwoju, 15(1), 109–117. https://doi.org/10.35784/pe.2020.1.13

Authors

Aleksandra Badora 
aleksandra.badora@up.lublin.pl
Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland Poland

Authors

Magdalena Celińska 

Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950 Lublin, Poland Poland

Statistics

Abstract views: 58
PDF downloads: 20