AGBOR E., ZHANG X., KUMAR A., 2014, A review of biomass co-firing in North America, in: Renewable & Sustainable Energy Reviews, 40, p. 930-943.
DOI: https://doi.org/10.1016/j.rser.2014.07.195
AL-MANSOUR F., ZUWALA J., 2010, An evaluation of biomass co-firing in Europe, in: Biomass & Bioenergy, 34, p. 620-629.
DOI: https://doi.org/10.1016/j.biombioe.2010.01.004
BAJWA D.S., PETERSON T., SHARM N., SHOJAEIARANI J., BAJWA S.G., 2018, A review of densified solid biomass for energy production, in: Renewable & Sustainable Energy Reviews, 96, p. 295-305.
DOI: https://doi.org/10.1016/j.rser.2018.07.040
CAO Y., PAWŁOWSKI A., 2013, Biomass as an answer to sustainable energy. Opportunity versus challenge, in: Environment Protection Engineering, 39(1), p. 153-161.
DOI: https://doi.org/10.37190/epe130112
CENTRAL STATISTICAL OFFICE (GUS), 2017, Poland Environment, Warsaw.
CHEN C., QIN S., CHEN F., LU Z., CHENG Z., 2019, Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis, in: Journal of the Energy Institute, 92(2), p. 364-369.
DOI: https://doi.org/10.1016/j.joei.2017.12.008
DEMIRBAS A., 2007, Effects of moisture and hydrogen content on the heating value of fuels, in: Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29, p. 649-655.
DOI: https://doi.org/10.1080/009083190957801
DZIKUC M., PIWOWAR A., 2016, Ecological and economic aspects of electric energy production using the biomass co-firing method: the case of Poland, in: Renewable & Sustainable Energy Reviews, 55, p. 856-862.
DOI: https://doi.org/10.1016/j.rser.2015.11.027
EMERHI E.A., 2011, Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders, in: Advances in Applied Science Research, 2, p. 236-246.
ENERGY REGULATORY OFFICE, 2018, Energy consumption in Poland 2005-2018, Warsaw.
EA (ENVIRONEMNTAL AGENCY), 2016, Material comparators for end-of-waste decision,. Fuels: biomass, Report – SC130040/R7, Bristol.
EROL M., HAYKIRI-ACMA H., KUCUKBAYRAK S., 2010, Calorific value estimation of biomass from their proximate analyses data, in: Renewable Energy, 35, p.170-173.
DOI: https://doi.org/10.1016/j.renene.2009.05.008
EC (EUROPEAN COMMISSION), 2012, DIRECTORATE-GENERAL FOR RESEARCH AND INNOVATION, Innovating for sustainable growth: A bioeconomy for Europe, Brussels.
EC (EUROPEAN COMMISSION), 2017, Biomass issues in the EU ETS, Guidance Document, Brussels.
EEA (EUROPEAN ENVIRONMENTAL AGENCY), 2018, Air quality in Europe – 2018 report, Copenhagen.
EU (EUROPEAN UNION), 2009, Directive 2009/28/EC of The European Parliament and of The Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, in: Off J. European Union, p. 16-62.
EUROSTAT, AIR EMISSION, 2019a, Greenhouse gas emissions by source sector, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge&lang=en (16.07.2019).
EUROSTAT, AIR EMISSION 2019b, Air pollutants by source sector, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (16.07.2019).
EUROSTAT CROP PRODUCER, 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (30.05.2019).
EUROSTAT ENERGY, 2019, Production ofelectricity and derived heat by type of fuel 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (30.05.2019).
EUROSTAT STATISTICS EXPLAINED, 2018, Main annual crop statistic, https://ec.europa.eu/eurostat/statistics-explained/index.php/Main_annual_crop_ statistics, (4.12.2018).
GILLENWATER M., 2005, Calculation Tool for Direct Emissions from Stationary Combustion version 3.0, in: Environmental Resources Trust, Washington DC.
GOTO K., YOGO K., HIGASHII T., 2013, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, in: Applied Energy, 111, p. 710-720.
DOI: https://doi.org/10.1016/j.apenergy.2013.05.020
GUSTAVSSON L., JOELSSON A., SATHRE R., 2010, Life cycle primary energy use and carbon emission of an eight-storey, in: Energy and Buildings, 42, p. 230-242.
DOI: https://doi.org/10.1016/j.enbuild.2009.08.018
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2006, IPCC Guidelines for National Greenhouse Gas Inventories, ed. Eggleston S. et al., Inst. Global Environ. Strategies, Hayama.
IEA (INTERNATIOANAL ENERGY AGENCY), 2017, CO2 emissions from fuel combustion – highlights (2017th ed.), IEA/OECD, Paris.
JANDACKA J., MALCHO M., OCHODEK T., KOLONICNY J., HOLUBCIK M., 2015, The increase of silver grass ash melting temperature using additives, in: International Journal of Renewable Energy Research, 5, p. 258-265.
LESTANDER T.A., JOHNSSON B., GROTHAGE M., 2009, NIR techniques create added values for the pellet and biofuel industry, in: Bioresource Technology, 100(4), p. 1589-1594.
DOI: https://doi.org/10.1016/j.biortech.2008.08.001
MAJ G., KRZACZEK P., KURANC A., PIEKARSKI W., 2017, Energy properties of sunflower seed husk as industrial extrusion residue, in: Research in Agricultural Engineering, 21, p. 77-84.
DOI: https://doi.org/10.1515/agriceng-2017-0008
MCKENDRY P., 2002, Energy production from biomass (Part I): overview of biomass, in: Bioresource Technology, 83 p. 37-46.
DOI: https://doi.org/10.1016/S0960-8524(01)00118-3
MITCHELL E.J.S., LEA-LANGTON A.R., JONES J.M., WILLIAMS A., LAYDEN P., JOHNSON R., 2016, The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove, in: Fuel Processing Technology, 142 p. 115-123.
DOI: https://doi.org/10.1016/j.fuproc.2015.09.031
OZYUGURAN A., YAMAN S., 2017, Prediction of Calorific Value of Biomass from Proximate Analysis, in: Energy Procedia, 107, p. 130-136.
DOI: https://doi.org/10.1016/j.egypro.2016.12.149
PAWŁOWSKI L. PAWŁOWSKI A., 2016, Wpływ sposobów pozyskiwania energii na realizację paradygmatów zrównoważonego rozwoju, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, 18(2), p. 19-37.
POLISH INSTITUTE OF ENVIRONMENT PROTECTION, 2016, Calorific value an CO2 emission Factor, Emissions Trading System (EU ETS), Warsaw.
TUMULURU J.S., WRIGHT C.T., KENNY K.L., HESS J.R., 2010, A review on biomass densification technologies for energy application, Idaho Natl. Lab., Idaho.
VASSILEV S., VASSILEVA C., VASSILEV V., 2015, Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview, in: Fuel, 158, p. 330-350.
DOI: https://doi.org/10.1016/j.fuel.2015.05.050
VICENTE E.D., ALVES C.A., 2018, An overview of particulate emissions from residential biomass combustion, in: Atmospheric Research, 199, p. 159-185.
DOI: https://doi.org/10.1016/j.atmosres.2017.08.027
WIELGOSIŃSKI G., ŁECHTAŃSKA P., NAMIECIŃSKA O., 2017, Emission of some pollutants from biomass combustion in comparison to hard coal combustion, in: Journal of the Energy Institute, 90, p. 787-796.
DOI: https://doi.org/10.1016/j.joei.2016.06.005
UN: UNITED NATIONS’ DIVISION FOR SUSTAINABLE DEVELOPMENT GOALS, 2012, Transforming our world: the 2030 Agenda for Sustainable Development, New York.
ZAJĄC T., KLIMEK-KOPYRA A., OLEKSY A., LORENC-KOZIK A., RATAJCZAK K., 2016, Analysis of yield and planttraits of oilseed rape (Brassica napus L.) cultivated in temperate region in light possibilities of sowing in arid areas, in: Acta Agrobotanica, 69, p. 1696-1709.
DOI: https://doi.org/10.5586/aa.1696
ZAJĄC T., SYNOWIEC A., OLEKSY A., MACUDA J., KLIMEK-KOPYRA A., BOROWIEC F., 2017, Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height, in: International Agrophysics, 31, p. 273-285.
DOI: https://doi.org/10.1515/intag-2016-0041
ZHANG X., LUO L., SKITMORE M., 2015, Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects, in: Journal of Cleaner Production, 103, p. 873-883.
DOI: https://doi.org/10.1016/j.jclepro.2015.04.024