Porównanie Japonii i krajów OECD pod względem zasobów związanych z dobrostanem
Abstrakt
Oceniając koncepcję dobrostanu pod kątem zrównoważoności, którą definiuje się jako poczucie posiadania zasobów fizycznych i psychicznych niezbędnych do dobrego życia, istotne jest skorzystanie z różnych perspektyw odnoszących się do czynników społeczno-psychologicznych lub ich możliwych skutków a także danych finansowych i gospodarczych. Przeprowadzona analiza umożliwiła na wskazanie poziomu dobrobytu pod względem zrównoważonych zasobów w krajach OECD, a także określenie różnic i podobieństw pomiędzy tymi państwami a Japonią, jednym z krajów grupy G8. Zgodnie z wynikami analizy skalowania wielowymiarowego Japonia znajduje się w tym samym klastrze co mający najwyższą wartość dodatnią Luksemburg, podczas gdy Niemcy należą do jednego z krajów o najwyższym wskaźniku rozbieżności w stosunku do innych państwo G8 w macierzy różnic.
Słowa kluczowe:
dobrostan, ochrona socjalna, kapitał naturalny, zrównoważony rozwój, OECD, G8, MDS, JaponiaBibliografia
ALDABBAS M., TEUFEL S., TEUFEL B., SPYCHER J., 2022, Forecasting the Quality of Life in a Future Smart Society, the Case of Switzerland, International Journal of Social Science and Humanity 12(2): 107-112, https://doi.org/10.18178/ ijssh.2022.12.2.1075.
DOI: https://doi.org/10.18178/ijssh.2022.V12.1075
Google Scholar
AYDAN S., BAYIN-DONAR G., ARIKAN C., 2022, Impacts of Economic Freedom, Health, and Social Expenditures on Well-Being Measured by the Better Life Index in OECD Countries, Social Work in Public Health 37(5): 435-447, https://doi.org/10.1080/19371918.2021.2018083.
DOI: https://doi.org/10.1080/19371918.2021.2018083
Google Scholar
BÉRENGER V., VERDIER-CHOUCHANE A., 2007, Multidimensional Measures of Well-Being: Standard of Living and Quality of Life Across Countries, World Development 35(7): 1259-1276, https://doi.org/10.1016/j.worlddev.2006.10.011.
DOI: https://doi.org/10.1016/j.worlddev.2006.10.011
Google Scholar
BRZEZIŃSKA J., 2022, A Study on the OECD Better Life Index Using Multivariate Statistical Analysis, Argumenta Oeconomica 1(48): 235-245, https://doi.org/10.15611/aoe.2022.1.10.
DOI: https://doi.org/10.15611/aoe.2022.1.10
Google Scholar
BUJA A., SWAYNE D. F., LITTMAN M. L., DEAN N., HOFMANN H., CHEN L., 2008, Data Visualization with Multidimensional Scaling, Journal of Computational and Graphical Statistics 17(2): 444-472, https://doi.org/10.1198/106186008X318440.
DOI: https://doi.org/10.1198/106186008X318440
Google Scholar
FINK J., DUCOING C., 2022, Does Natural Resource Extraction Compromise Future Well-Being? Norwegian Genuine Savings, 1865-2018, The Extractive Industries and Society 10112: 1-15,https://doi.org/10.1016/j.exis.2022.101127.
DOI: https://doi.org/10.1016/j.exis.2022.101127
Google Scholar
GONZÁLEZ-CARRASCO M., VAQUÉ C., MALO S., CROUS G., CASAS F., FIGUER C., 2019, A Qualitative Longitudinal Study on the Well-Being of Children and Adolescents, Child Indicators Research 12(2): 479-499, https://doi.org/10.1007/s12187-018-9534-7.
DOI: https://doi.org/10.1007/s12187-018-9534-7
Google Scholar
HANSEN T., SLAGSVOLD B., 2012, The Age and Subjective Well-Being Paradox Revisited: A Multidimensional Perspective, Norsk Epidemiologi 22(2), https://doi.org/10.5324/nje.v22i2.1565.
DOI: https://doi.org/10.5324/nje.v22i2.1565
Google Scholar
HAQ S., 2003, Future of the G-8, Strategic Studies 23(3): 168-186, http://www.jstor.org/stable/45242486.
Google Scholar
HECK G., HESS S., 2017, Tracing the Effects of the EU-Turkey Deal Movements, Journal for Critical Migration and Border Regime Studies 3(2): 35-56.
Google Scholar
HENDERSON K., LOREAU M., 2023, A Model of Sustainable Development Goals: Challenges and Opportunities in Promoting Human Well-Being and Environmental Sustainability, Ecological Modelling 475: 110164, https://doi.org/10.1016/j.ecolmodel.2022.110164.
DOI: https://doi.org/10.1016/j.ecolmodel.2022.110164
Google Scholar
HOUT M. C., PAPESH M. H., GOLDINGER S. D., 2013, Multidimensional Scaling, Wiley Interdisciplinary Reviews: Cognitive Science 4(1): 93-103, https://doi.org/10.1002/wcs.1203.
DOI: https://doi.org/10.1002/wcs.1203
Google Scholar
INCE F., 2020, The Effects of COVID-19 Pandemic on the Workforce in Turkey, Smart Journal 6(32): 1125-1134, https://doi.org/10.31576/smryj.546.
DOI: https://doi.org/10.31576/smryj.546
Google Scholar
INCE F., 2023, Digital Transformation and Well-Being, Digital Psychology’s Impact on Business and Society, eds. Anshari M., Razzaq A., Fithriyah M., Kamal A.N., IGI Global, https://doi.org/10.4018/978-1-6684-6108-2.
DOI: https://doi.org/10.4018/978-1-6684-6108-2
Google Scholar
JAPANESE RED CROSS SOCIETY, 2022, Social Well-being Services: Annual Report of 2020-2021, https:// www.jrc.or.jp/english/activity/well-being/ (09.08.2022).
Google Scholar
KORONAKOS G., SMIRLIS Y., SOTIROS D., DESPOTIS D.K., 2022, The OECD Better Life Index: A Guide for Well-Being Based Economic Diplomacy, Modern Indices for International Economic Diplomacy, eds. Charles V., Emrouznejad A., Palgrave Macmillan, Cham, https://doi.org/10.1007/978-3-030-84535-3_2.
DOI: https://doi.org/10.1007/978-3-030-84535-3_2
Google Scholar
LAWRENCE J., ARIETTA S., KAZHDAN M., LEPAGE D., O’HAGAN C., 2010, A User-Assisted Approach to Visualizing Multidimensional Images, IEEE transactions on Visualization and Computer Graphics 17(10): 1487-1498, https://doi.org/10.1109/TVCG.2010.229.
DOI: https://doi.org/10.1109/TVCG.2010.229
Google Scholar
LIBERATI P., RESCE G., 2022, Regional Well-Being and Its Inequality in the OECD Member Countries, The Journal of Economic Inequality 20: 671-700, https://doi.org/10.1007/s10888-021-09521-7.
DOI: https://doi.org/10.1007/s10888-021-09521-7
Google Scholar
NAKAJIMA H., MORITA A., KANAMORI S., AIDA J., FUJIWARA T., 2022, The frequency of job participation and well-being of older people in Japan: Results from JAGES study, Archives of Gerontology and Geriatrics 104720: 1-10, https://doi.org/10.1016/j.archger.2022.104720.
DOI: https://doi.org/10.1016/j.archger.2022.104720
Google Scholar
NETO F., 2023, Brazilian International Students’ Satisfaction with Migration Life in Portugal, Journal of International Students 13(2), https://doi.org/10.32674/jis.v13i2.4782.
DOI: https://doi.org/10.32674/jis.v13i2.4782
Google Scholar
NISHAAT A., 2022, Understanding the Concepts of Subjective Well-being and Psychological Well-being, The Bulletin of the Graduate School, Soka University 43: 99-108, http://hdl.handle.net/10911/00040868.
Google Scholar
NOWAK-OLEJNIK A., SCHIRPKE U., TAPPEINER U., 2022, A Systematic Review on Subjective Well-Being Benefits ssociated with Cultural Ecosystem Services, Ecosystem Services, 57: 101467, https://doi.org/10.1016/j.ecoser.2022.101467.
DOI: https://doi.org/10.1016/j.ecoser.2022.101467
Google Scholar
OECD, 2022, Resources for Future Well-being, https://stats.oecd.org/ (09.08.2022).
Google Scholar
PATEL S. R., BAKKEN S., RULAND C., 2008, Recent Advances in Shared Decision Making for Mental Health, Current Opinion in Psychiatry 21(6): 606-612, https://doi.org/10.1097/YCO.0b013e32830eb6b4.
DOI: https://doi.org/10.1097/YCO.0b013e32830eb6b4
Google Scholar
SAEEDN., NAM H., HAQ M. I. U., MUHAMMAD-SAQIB D. B., 2018, A Survey on Multidimensional Scaling, ACM Computing Surveys (CSUR) 51(3): 1-25, https://doi.org/10.1145/3178155.
DOI: https://doi.org/10.1145/3178155
Google Scholar
SALOM-PÉREZ R., WULTSCH C., ADAMS J. R., SOTO-FOURNIER S., GUTIÉRREZ-ESPELETA G. A., WAITS L. P., 2022, Genetic Diversity and Population Structure for Ocelots (Leopardus Pardalis) in Costa Rica, Journal of Mammalogy 103(1): 68-81, https://doi.org/10.1093/jmammal/gyab146.
DOI: https://doi.org/10.1093/jmammal/gyab146
Google Scholar
SRIVASTAVA S., CHAUHAN S., MUHAMMAD T., SIMON D. J., KUMAR P., PATEL R., SINGH S. K., 2021, Older Adults’ Psychological and Subjective Well-Being as a Function of Household Decision Making Role: Evidence from Cross-Sectional Survey in India, Clinical Epidemiology and Global Health 10: 100676, https://doi.org/10.1016/j.cegh.2020.100676.
DOI: https://doi.org/10.1016/j.cegh.2020.100676
Google Scholar
SUN J., CROWE M., FYFE C., 2011, Extending Metric Multidimensional Scaling with Bregman Divergences, Pattern Recognition 44(5): 1137-1154, https://doi.org/10.1016/j.patcog.2010.11.013.
DOI: https://doi.org/10.1016/j.patcog.2010.11.013
Google Scholar
TAKAHASHI T., ASANO S., UCHIDA Y., TAKEMURA K., FUKUSHIMA S., MATSUSHITA K., OKUDA N., 2022, Effects of Forests and Forest-related Activities on the Subjective Well-Being of Residents in a Japanese Watershed: An Econometric Analysis Through the Capability Approach, Forest Policy and Economics 139: 102723, https://doi.org/10.1016/j.forpol.2022.102723.
DOI: https://doi.org/10.1016/j.forpol.2022.102723
Google Scholar
UN, 2022, The 17 UN Sustainable Development Goals, New York, https://sdgs.un.org/goals.
Google Scholar
WILLIAMS M., MUNZNER T., 2004, Steerable, Progressive Multidimensional Scaling, IEEE Symposium on Information Visualization: 57-64, Texas, USA, https://doi.org/10.1109/INFVIS.2004.60.
DOI: https://doi.org/10.1109/INFVIS.2004.60
Google Scholar
ZAND M. S., WANG J., HILCHEY S., 2015, Graphical Representation of Proximity Measures for Multidimensional Data: Classical and Metric Multidimensional Scaling, The Mathematica Journal 17(7): 1-61, https://doi.org/10.3888/tmj.
DOI: https://doi.org/10.3888/tmj.17-7
Google Scholar
Statystyki
Abstract views: 249PDF downloads: 244
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.