Sztuczna inteligencja i ochrona środowiska budynków
Zheng Chen
(Chiny)
https://orcid.org/0000-0001-8134-8129
Yu He
yu.he1@yahoo.comGuilin University of Electronic Technology, School of Art and Design, Guilin, China (Chiny)
https://orcid.org/0000-0001-9732-9766
Abstrakt
Globalne zanieczyszczenie środowiska ma niezwykle negatywny wpływ na naszą planetę i zagraża przyszłości ludzkości. Jednym z głównych źródeł emisji odpadów i substancji toksycznych do atmosfery jest sektor budowlany. Konieczne jest znalezienie sposobów na zminimalizowanie szkód wyrządzanych przyrodzie. Obecnie technologie sztucznej inteligencji należą do najbardziej obiecujących sposobów poprawy stanu środowiska. Układy automatyki rozwiązują szereg problemów związanych z redukcją kosztów i zasobów, pełnym wykorzystaniem odnawialnych źródeł energii, poprawą bezpieczeństwa systemów energetycznych i wieloma innymi. Celem artykułu jest określenie funkcjonalności technologii sztucznej inteligencji oraz sposobów jej zastosowania w zielonym budownictwie. Zastosowano metody analizy i syntezy istniejących modeli informacyjnych. W artykule opisano systemy automatycznego sterowania w projektowaniu, budowie i eksploatacji budynków. Należą do nich dobrze znane metody, takie jak Building Information Model, Machine Learning, Deep Learning, oraz wąskoprofilowe: Response Surface Methodology, Multi-Agent System, Digital Twins itp. Ponadto badanie stwierdza, że podczas planowania i aranżacji zielone budynki muszą spełniać następujące zasady: wysoka efektywność energetyczna, racjonalne wykorzystanie zasobów naturalnych, dostosowanie do środowiska i klimatu, zapewnienie komfortu i bezpieczeństwa mieszkańcom. W artykule przedstawiono standardy zielonego budownictwa istniejące na świecie. Praca ta może służyć jako przewodnik przy wyborze modeli informacyjnych i ma praktyczną wartość w rozwoju zielonych budynków.
Słowa kluczowe:
ekologia, efektywność energetyczna, zielone budynki, model informacyjny, system automatycznego sterowaniaBibliografia
AKOMEA-FRIMPONG I., KUKAH A. S., JIN X., OSEI-KYEI R., PARIAFSAI F., 2022, Green finance for green buildings: A systematic review and conceptual foundation, Journal of Cleaner Production 356: 131869.
DOI: https://doi.org/10.1016/j.jclepro.2022.131869
Google Scholar
BADUGE S.K., THILAKARATHNA S., PERERA J.S., ARASHPOUR M., SHARAFI P., TEODOSIO B., SHRINGI A., MENDIS P., 2022, Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications, Automation in Construction 141: 104440.
DOI: https://doi.org/10.1016/j.autcon.2022.104440
Google Scholar
BUILTIN, 2022, What is deep learning and how does it work? https://builtin.com/machine-learning/what-is-deep-learning.
Google Scholar
CHINESESTANDARD.NET, 2014, Assessment standard for green building, https://www.chinesestandard.net/PDF.aspx/GBT50378-2014.
Google Scholar
DING Z., LI Z., FAN C., 2018, Building energy savings: Analysis of research trends based on text min-ing, Automation in Construction 96: 398-410.
DOI: https://doi.org/10.1016/j.autcon.2018.10.008
Google Scholar
DOUNIS A.I., 2010, Artificial intelligence for energy conservation in buildings, Advances in Building Energy Research 4(1): 267-299.
DOI: https://doi.org/10.3763/aber.2009.0408
Google Scholar
DOWLING R., MCGUIRK P., MAALSEN S., SADOWSKI J., 2021, How smart cities are made: A priori, ad hoc and post hoc drivers of smart city implementation in Sydney, Australia, Urban Studies, 58(16): 3299-3315.
DOI: https://doi.org/10.1177/0042098020986292
Google Scholar
GOHARI S., BAER D., NIELSEN B. F., GILCHER E., SITUMORANG W.Z., 2020, Prevailing ap-proaches and practices of citizen participation in smart city projects: Lessons from Trondheim, Nor-way, Infrastructures 5(4): 36.
DOI: https://doi.org/10.3390/infrastructures5040036
Google Scholar
IEA, 2019, Global Status Report for Buildings and Construction, https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019.
Google Scholar
JINKANG R., 2019, Environmental impact, significance and development direction of green buildings, Green Building Materials 3: 30-31.
Google Scholar
JONBAN M.S., ROMERAL L., AKBARIMAJD A., ALI Z., GHAZIMIRSAEID S.S., MARZBAND M., PUTRUS G., 2021, Autonomous energy management system with self-healing capabilities for green buildings (microgrids), Journal of Building Engineering 34: 101604.
DOI: https://doi.org/10.1016/j.jobe.2020.101604
Google Scholar
KARCHES T., 2022, Fine-tuning the aeration control for energy-efficient operation in a small sewage treatment plant by applying biokinetic modeling. Energies 15(17): 6113, https://doi.org/10.3390/en15176113.
DOI: https://doi.org/10.3390/en15176113
Google Scholar
KAYA M.M., TAŞKIRAN Y., KANOĞLU A., DEMİRTAŞ A., ZOR E., BURÇAK I., NACAK M.C., AKGÜL F.T., 2021, Designing a smart home management system with artificial intelligence & machine learning, technical report, DOI: 10.13140/RG.2.2.33082.72641/1.
Google Scholar
LI Q., LONG R., CHEN H., CHEN F., WANG J., 2020, Visualized analysis of global green buildings: Development, barriers and future directions, Journal of Cleaner Production 245: 118775.
DOI: https://doi.org/10.1016/j.jclepro.2019.118775
Google Scholar
LU H., SHENG X., DU F., 2022, Economic benefit evaluation system of green building energy saving building technology based on entropy weight method, Processes 10(2): 382.
DOI: https://doi.org/10.3390/pr10020382
Google Scholar
PERSHAKOV V., BIELIATYNSKYI A., POPOVYCH I., LYSNYTSKA K., KRASHENINNIKOV V., 2016, Progressive collapse of high-rise buildings from fire, MATEC Web of Conferences 73: 01001, https://doi.org/10.1051/matecconf/20167301001.
DOI: https://doi.org/10.1051/matecconf/20167301001
Google Scholar
SERRANO W., 2022, iBuilding: Artificial intelligence in intelligent buildings, Computing and Applications 34(2): 875-897.
DOI: https://doi.org/10.1007/s00521-021-05967-y
Google Scholar
SHAHSAVAR M.M., AKRAMI M., GHEIBI M., KAVIANPOUR B., FATHOLLAHI-FARD A.M., BEHZADIAN K., 2021, Constructing a smart framework for supplying the biogas energy in green build-ings using an integration of response surface methodology, artificial intelligence and petri net modelling, Energy Conversion and Management 248: 114794.
DOI: https://doi.org/10.1016/j.enconman.2021.114794
Google Scholar
SHEN Y., FAURE M., 2021, Green building in China, International Environmental Agreements: Poli-tics, Law and Economics 21(2): 183-199.
DOI: https://doi.org/10.1007/s10784-020-09495-3
Google Scholar
THORPE D., ENSHASSI A., MOHAMED S., ABUSHABAN S., COURS S., 2010, The impacts of con-struction and the built environment, Willmott Dixon, London.
Google Scholar
UN, 2015, UN Sustainability Goals, https://www.home.sandvik/en/about-us/sustainable-business/global-commitments/UN-global-goals-index/?gclid=EAIaIQobChMIibLSzZvO_AIVc0eRBR1WqAeMEAAYASAAEgIDjPD_BwE.
Google Scholar
UN, 2020, The Paris Agreement, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.
Google Scholar
W, Z., JIANG M., CAI Y., WANG H., LI S., 2019, What hinders the development of green building? An investigation of China, International Journal of Environmental Research and Public Health 16(17): 3140.
DOI: https://doi.org/10.3390/ijerph16173140
Google Scholar
WAN Y., ZHAI Y., WANG X., CUI C., 2022, Evaluation of indoor energy-saving optimization design of green buildings based on the intelligent GANN-BIM model, Mathematical Problems in Engineering 1: 10.
DOI: https://doi.org/10.1155/2022/3130512
Google Scholar
WANG C., 2021, Evaluation algorithm of ecological energy-saving effect of green buildings based on Gray correlation degree, Journal of Mathematics 1: 10.
DOI: https://doi.org/10.1155/2021/6705220
Google Scholar
WANG W., TIAN Z., XI W., TAN Y. R., DENG Y., 2021, The influencing factors of China’s green build-ing development: An analysis using RBF-WINGS method, Building and Environment 188: 107425.
DOI: https://doi.org/10.1016/j.buildenv.2020.107425
Google Scholar
WEI Y., 2021, The development of green building technology, IOP Conference Series: Earth and Envi-ronmental Science 812(1): 012011.
DOI: https://doi.org/10.1088/1755-1315/812/1/012011
Google Scholar
WORLDGBC.ORG, 2019, About Green Building, https://www.worldgbc.org/what-green-building.
Google Scholar
WUNI I. Y., SHEN G. Q., OSEI-KYEI R., 2019, Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018, Energy and Buildings 190: 69-85.
DOI: https://doi.org/10.1016/j.enbuild.2019.02.010
Google Scholar
XUE F., ZHAO J., 2021, Application calibration based on energy consumption model in optimal design of green buildings, Advances in Materials Science and Engineering 1: 9.
DOI: https://doi.org/10.1155/2021/5360443
Google Scholar
YANG B., LV Z., WANG F., 2022, Digital twins for intelligent green buildings, Buildings 12(6): 856.
DOI: https://doi.org/10.3390/buildings12060856
Google Scholar
ZAKHAROV A.N., KALASHNIKOV D.B., 2020, Environmental problems of China’s industrial devel-opment, Russian Foreign Economic Bulletin 1: 40-50.
Google Scholar
ZHANG Y., WANG H., GAO W., WANG F., ZHOU N., KAMMEN D., YING X., 2019, A survey of the status and challenges of green building development in various countries, Sustainability 11(19): 5385.
DOI: https://doi.org/10.3390/su11195385
Google Scholar
ZHANG Y., WANG J., HU F., WANG Y., 2017, Comparison of evaluation standards for green building in China, Britain, United States, Renewable and Sustainable Energy Reviews 68: 262-271.
DOI: https://doi.org/10.1016/j.rser.2016.09.139
Google Scholar
ZHAO X.G., GAO C.P., 2022, Research on energy-saving design method of green building based on BIM technology, Scientific Programming 1: 10.
DOI: https://doi.org/10.1155/2022/2108781
Google Scholar
Autorzy
Yu Heyu.he1@yahoo.com
Guilin University of Electronic Technology, School of Art and Design, Guilin, China Chiny
https://orcid.org/0000-0001-9732-9766
Statystyki
Abstract views: 530PDF downloads: 422
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.