Zastosowanie inżynierii sterowania modelami i sztuk pięknych w przygotowywaniu systemu reagowania na zmiany klimatyczne dla obszarów wiejskich w Afryce: przypadek wspólnoty Adum-Aiona w Nigerii

Emmanuel Okewu


Centre for Information Technology and Systems, University of Lagos, Lagos (Nigeria)

Sanjay Misra


Department of Computer and Information Sciences, Covenant University, Ota, Nigeria; Atilim University, Ankara, Turkey (Nigeria)

Jonathan Okewu


Department of Visual and Creative Arts, Federal University, Lafia (Nigeria)


Abstrakt

Eksperci biorący udział w szczycie klimatycznym w Paryżu (COP21) sugerują, że pomimo mimo podejmowanych działań zaradczych, średnia temperatura na naszej planecie podniesie się wkrótce o 20C. Gdy to nastąpi, społeczno-ekonomiczne podstawy bytu, szczególnie w krajach rozwijających się, zostaną naruszone w wyniku m.in. przewidywanego wzrostu zachorowań, zniszczenia gleby, pustynnienia i braku zabezpieczenia żywności. Aby zapobiec zbliżającemu się niebezpieczeństwu podpisano prawnie wiążący protokół klimatyczny, zaakceptowany także przez kraje afrykańskie. Jego celem jest uregulowanie i wsparcie dla zachowań prośrodowiskowych w skali globalnej. Opisywana w literaturze wrażliwość klimatu w Afryce wydaje się być szczególnie istotna. Chociaż w porównaniu do innych kontynentów jej udział w emisji zanieczyszczeń do atmosfery jest mniejszy, to właśnie ten kontynent ma dotknąć największy poziom degradacji środowiskowej. Wynika to m.in. z braku możliwości wdrażania kluczowych dla klimatu systemów i mechanizmów. Stąd wynika nasza determinacja w opracowaniu kombinacji naukowych i artystycznych modeli, służących jako narzędzia do formułowania systemu odpowiedzi na czekające Afrykę zmiany klimatyczne. Nasze podejście obejmuje modele obliczeniowy i odnoszący się do sztuk pięknych, które mają pomóc w zwróceniu uwagi społeczeństw na niezbędne zachowania prośrodowiskowe. W badaniach koncentrujemy się na obszarach wiejskich w Afryce, aby przedstawić wpływ zmian klimatycznych na rolnictwo, które stanowi podstawę afrykańskiego systemu ekonomicznego. Zbadaliśmy ślad węglowy obszarów wiejskich w Nigerii, we wspólnocie Adum-Aiona. Autorzy przedstawiają dane pokazujące realne zagrożenia dla ludzi, które niesie ze sobą emisja gazów cieplarnianych. Prezentowany jest także test odnoszący się do Systemu Odpowiedzi na Zmiany Klimatu, który pomoże mieszkańcom nie tylko w adaptacji do, ale także w zmniejszeniu konsekwencji zmian klimatycznych. Dyskusja zostanie wsparta przeglądem literaturowym, pomagającym lepiej określić wymagania, które powinien spełniać model, z wykorzystaniem UML. Należy się spodziewać, że wdrożenie proponowanego systemu przyniesie realne korzyści, także te noszące się do uwarunkowań społeczno-ekonomicznych. Rezultaty przeprowadzonych badań empirycznych precyzują zakres zagrożeń związanych ze zmianami klimatycznymi. W końcowej części odniesiemy się do doświadczeń związanych z przemysłem, także w kontekście Afryki. Zastosowanie inżynierii sterowania modelami wzbogaca zakres wiedzy odnoszący się zarówno w kontekście badań nad zmianami klimatycznymi,  jak i możliwych zastosowań inżynierii.


Słowa kluczowe:

rolnictwo, zmiany klimatyczne, wizualny i kreatywny model sztuki, inżynieria modelowa, system odpowiedzi

AKANDE V., 2016, Calabar Carnival 2016 to Explore Climate Change Again, http://thenationonlineng.net/calabar-carnival-2016-to-explore-climate-change-again (15.04.2016).
  Google Scholar

BABATUNDE H.O., 2007, A Comprehensive Approach to Visual and Creative Arts, Agege, Lagos, HOB Designs Nig. Limited, p. 9.
  Google Scholar

BARBIER G., CUCCHI V., HILL R.C.D., 2015, Model-driven engineering applied to crop modeling, in: Ecol. Informatics 26, p. 173-181.
  Google Scholar

BELLPRAT et al., 2015, Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective, in: Weather and Climate Extremes 9, p. 36-46.
  Google Scholar

BRAMBILLA M., FRATERNALI P., 2014. Large-scale Model-Driven Engineering of web user interaction: The WebML and WebRatio experience, in: Science of Computer Programming 89, p. 71-78.
  Google Scholar

BRUNELIERE H. et al., 2014, MoDisco: A model driven reverse engineering framework, in: Information and Software Technology 56, p. 1012-1032.
  Google Scholar

BUBECK A., MAIDEL B., LOPEZ F.G., 2014, Model driven engineering for the implementation of user roles in industrial service robot applications, in: Proc. Technology 15, p. 605-612.
  Google Scholar

CALATAYUD et al., 2016, Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stem borers in East Africa?, in: Agriculture, Ecosystems and Environment 224, p. 95-103.
  Google Scholar

CALEGARI D., MOSSAKOWSKI T., SZASZ N., 2016, Heterogeneous verification in the context of model driven engineering, in: Science of Computer Programming p. 1-33.
  Google Scholar

CALZADILLA A.,, ZHU T., REHDANZ K., EHDANZ, TOL R.S.J., RINGLER C., 2014, Climate change and agriculture: Impacts and adaptation options in South Africa, in: Water Resources and Economics 5, p. 24-48.
  Google Scholar

CERVERA et al., 2015, On the usefulness and ease of use of a model-driven Method Engineering approach, in: Informat. Systems 50, p. 36-50.
  Google Scholar

CHABRIDON S. et al., 2013, Building ubiquitous QoC-aware applications through model-driven software engineering. Science of Computer Programming 78, p. 1912-1929.
  Google Scholar

CHIDIEBERE O., CHIRWA P.W., FRANCIS J., BABALOLA F.D., 2016, Assessing forest-based rural communities’ adaptive capacity and coping strategies for climate variability and change: The case of Vhembe district in South Africa, in: Environmental Development.
  Google Scholar

CHINOWSKY P., SCHWEIKERT A., HAY-LES C., 2014, Potential Impact of Climate Change on Municipal Buildings in South Africa, in: Proc. Econ. and Finance 18, p. 456-464.
  Google Scholar

CICCOZZI F., CICCHETTI A., SJODIN M., 2013, Round-trip support for extra-functional property management in model-driven engineering of embedded systems, in: Information and Software Technology 55, p. 1085-1100.
  Google Scholar

CUADRADO J.S. et al., 2014, Applying model-driven engineering in small software enterprises, in: Science of Computer Programming 89, p. 176-198.
  Google Scholar

CLARKE et al., 2016, Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: A comparative study of environmental and archaeological evidence, in: Quaternary Science Reviews 136, p. 96-121.
  Google Scholar

DAVIES et al., 2014, The CancerGrid experience: Metadata-based model-driven engineering for clinical trials, in: Science of Computer Programming 89, p. 126-143.
  Google Scholar

DAVIES et al., 2015, Formal model-driven engineering of critical information systems, in: Science of Computer Programming 103, p. 88-113.
  Google Scholar

FANT C., SCHLOSSER A., STRZEPEK K., 2016, The impact of climate change on wind and solar resources in southern Africa, in: Applied Energy 161, p. 556-564.
  Google Scholar

GARCIA-MAGARINO G. PALACIOS-NAVARRO, 2016, A model-driven approach for constructing ambient assisted-living multi-agent systems customized for Parkinson patients, in: The Journal of Systems and Software 111, p. 34-48.
  Google Scholar

GORTON I., 2011, Essential Software Architecture. Springer.
  Google Scholar

GRACE et al., 2015, Linking climate change and health outcomes: Examining the relationship between temperature, precipitation and birth weight in Africa, in: Global Environmental Change 35, p. 125-137.
  Google Scholar

GURUNULE D., NASHIPUDIMATH M., 2015, Analysis of Aspect Orientation and Model Driven Engineering for Code Generation, in: Procedia Computer Science 45, p. 852-861.
  Google Scholar

HOST M., REGNELL B., WOHLIN C., 2000, Using students as subjects - a comparative study of students and professionals in lead-time impact assessment, in: Empirical Software Engineering 5(3), p. 201-214.
  Google Scholar

HUTCHINSON J., WHITTLE J., ROUNCEFIELD M., 2014, Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure, in: Science of Computer Programming 89, p. 144-161.
  Google Scholar

JONES M.R., SINGELS A., RUANE A.C., 2015, Simulated impacts of climate change on water use and yield of irrigated sugarcane in South Africa, in: Agricultural Systems 139, p. 260-270.
  Google Scholar

KAHSAY G.A, HANSEN L.G., 2016, The effect of climate change and adaptation policy on agricultural production in Eastern Africa, in: Ecological Economics 121, p. 54-64.
  Google Scholar

KLAUSBRUCKER et. al, 2016, A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies, in: Environmental Science & Policy 57, p. 70-78.
  Google Scholar

KUSANGAYAS. et al., 2014, Impacts of climate change on water resources in southern Africa: A review, in: Physics and Chemistry of the Earth 67/69, p. 47-54.
  Google Scholar

LI et al., 2015, Hydrological projections under climate change in the near future by RegCM4 in Southern Africa using a large-scale hydrological model, in: Journal of Hydrology 528, p. 1-16.
  Google Scholar

LIM S. et al., 2016, 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa, in: Palaeogeography, Palaeoclimatology, Palaeoecology 451, p. 197-209.
  Google Scholar

LUKMAN T. et al., 2013, Model-driven engineering of process control software – beyond device-centric abstractions, in: Control Engineering Practice 21, p. 1078-1096.
  Google Scholar

LUTJEN M. et al., 2014, Model-driven logistics engineering – challenges of model and object transformation, in: Procedia Technology 15, p. 303-312. 15, p. 303-312.
  Google Scholar

MARTINEZ-GARCIA et al., 2015, Working with the HL7 metamodel in a Model Driven Engineering context, in: Journal of Biomedical Informatics 57, p. 415-424.
  Google Scholar

MOYO E.N., SHINGIRAI S., 2015, Southern Africa’s 2012-13 Violent Storms: Role of Climate Change, in: Procedia IUTAM 17, p. 69-78.
  Google Scholar

NIELSEN J., LANDAUER T., 1993, A mathematical model of the finding of usability problems, in: Proceedings of ACM INTERCHI'93 Conference, p. 206-213.
  Google Scholar

PANESAR-WALAWEGE R.K., SABETZAD-EH M., BRIAND L., 2013, Supporting the very-fication of compliance to safety standards via model-driven engineering: Approach, tool-support and empirical validation, in: Information and Software Technology 55, p. 836-864.
  Google Scholar

PEREZ et al., 2015, How resilient are farming households and communities to a changing climate in Africa? A gender-based perspective, in: Global Environmental Change 34, p. 95-107.
  Google Scholar

RALEIGH C., CHOI H.J., KNIVETON D., 2015, The devil is in the details: An investigation of the relationships between conflict, food price and climate across Africa, in: Global Environmental Change 32, p. 187-199.
  Google Scholar

RIESENFELD R.F., HAIMES R., COHEN E., 2015, Initiating a CAD renaissance: Multidisciplinary analysis driven design Framework for a new generation of advanced computational design, engineering and manufacturing environments, in: Comput. Methods Appl. Mech. Engrg. 284, p. 1054-1072.
  Google Scholar

RUNESON P., 2003, Using students as Experiment Subjects – An Analysis on Graduate and Freshmen Student Data, in: (ed.) Linkman S., 7th International Conference on Empirical Assessment & Evaluation in Software Engineering (EASE'03), p. 95-102.
  Google Scholar

RUTLE A. et al., 2015, Model-Driven Software Engineering in Practice: a Content Analysis Software for Health Reform Agreements, in: Procedia Computer Science 63, p. 545-552.
  Google Scholar

SCHROTH G. et al., 2016, Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation, in: Science of the Total Environment 556, p. 231-241.
  Google Scholar

SAURO J., KINDLUND E., 2005, A Method to Standardize Usability Metrics into a Single Score, in: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems, ACM, p. 401-409.
  Google Scholar

SEO S.N., 2014. Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa, in: Europ. J. Agr. 52, p. 157-165.
  Google Scholar

Da SILVA R., 2015, Model-driven engineering: A survey supported by the unified conceptual model, in: Computer Languages, Systems & Structures 43, p. 139-155.
  Google Scholar

SIROHI N., PARASHAR A., 2013, Component Based System and Testing Techniques, in Advanced Research in Computer and Communication Engineering, 2(6), p. 33-42.
  Google Scholar

STEYNOR et al., 2016, Co-exploratory climate risk workshops: Experiences from urban Africa, in: Climate Risk Management.
  Google Scholar

SVAHNBERG M., AURUM A., WOHLIN C., 2008, Using students as Subjects - An Empirical Evaluation, in: Proc. 2nd International Symposium on Empirical Software Engineering and Management ACM, p. 288-290
  Google Scholar

TURNER C.W., LEWIS J.R., NIELSEN J., 2006, Determining usability test sample size, in: (ed.) Karwowski W., International Encyclopaedia of Ergonomics and Human Factors, CRC Press, Boca Raton, p. 3084-3088.
  Google Scholar

WAUTELET Y., KOLP M., 2016, Business and model-driven development of BDI multi-agent system, in: Neurocomputing 182, p. 304-321.
  Google Scholar

WEBBER H., GAISER T., EWERT F., 2014, What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?, in: Agricultural Systems 127, p. 161-177.
  Google Scholar

WEHRMEISTER et al., 2014, Combining aspects and object-orientation in model-driven engineering for distributed industrial mechatronics systems, in: Mechatronics 24, p. 844-865.
  Google Scholar

van WESENBEECK C.F.A., 2016, Localization and characterization of populations vulnerable to climate change: Two case studies in Sub-Saharan Africa, in: Appl. Geogr. 66, p. 81-91.
  Google Scholar

WUNDSCH M. et al., 2016, Sea level and climate change at the southern Cape coast, South Africa, in: Palaeogeography, Palaeoclimatology, Palaeoecology 446, p. 295-307.
  Google Scholar

YOUNG A.J. et al. 2016, Biodiversity and climate change: Risks to dwarf succulents in Southern Africa, in: J. of Ar. Env.129, p. 16-24.
  Google Scholar

ZINYENGERE N., CRESPO O., HACHIGONTAS., 2013, Crop response to climate change in southern Africa, in: Global and Planetary Change 111, p. 118-126.
  Google Scholar


Opublikowane
2017-01-02

Cited By / Share

Okewu, E., Misra, S., & Okewu, J. (2017). Zastosowanie inżynierii sterowania modelami i sztuk pięknych w przygotowywaniu systemu reagowania na zmiany klimatyczne dla obszarów wiejskich w Afryce: przypadek wspólnoty Adum-Aiona w Nigerii. Problemy Ekorozwoju Problems of Sustainable Development, 12(1), 101–116. Pobrano z https://ph.pollub.pl/index.php/preko/article/view/5002

Autorzy

Emmanuel Okewu 

Centre for Information Technology and Systems, University of Lagos, Lagos Nigeria

Autorzy

Sanjay Misra 

Department of Computer and Information Sciences, Covenant University, Ota, Nigeria; Atilim University, Ankara, Turkey Nigeria

Autorzy

Jonathan Okewu 

Department of Visual and Creative Arts, Federal University, Lafia Nigeria

Statystyki

Abstract views: 10
PDF downloads: 3