Monitoring mikrozanieczyszczeń organicznych jako ważne narzędzie realizacji zrównoważonego rozwoju

Maria Włodarczyk-Makuła


Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)

Ewa Wiśniowska


Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)

Agnieszka Popenda


Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)


Abstrakt

Zasoby wodne są kluczowym elementem zrównoważonego rozwoju. Z punktu widzenia ekonomii brak czystej wody prowadzi do długofalowych skutków dla rozwoju i wzrostu ludzkości. Kluczowym pytaniem jest co można zrobić, aby rozwój ekonomiczny odbywał się w sposób pozwalający na zachowanie zasobów naturalnych dla przyszłych pokoleń?  Postęp w sposobie monitorowania będzie krytyczny dla sprawdzenia i oceny stopnia realizacji celów zrównoważonego rozwoju. Monitorowanie stanu istniejącego nie jest odpowiednio skuteczną metodą. Lepszą strategią jest monitorowanie zrzutów zanieczyszczeń, tak aby można było im zapobiegać lub je ograniczać. Obecnie tego rodzaju monitoring nie jest stosowany w odniesieniu do odpływów z oczyszczalni ścieków komunalnych pomimo tego, że wyniki badań wskazują, że organiczne mikrozanieczyszczenia występują powszechnie w oczyszczonych ściekach. Z tego względu należałoby wprowadzić obowiązek monitorowania stężeń wybranych mikrozanieczyszczeń w ściekach oczyszczonych. Zakres monitoringu powinien być dobrany indywidualnie dla każdej oczyszczalni ścieków w zależności od lokalnych czynników, co pozwoli na realizację zasady zrównoważonego rozwoju. Dobrym kierunkiem jest natomiast wprowadzony w Polsce obowiązek monitorowania wybranych organicznych mikrozanieczyszczeń w wodach powierzchniowych i podziemnych.


Słowa kluczowe:

mikrozanieczyszczenia organiczne, bezpieczeństwo środowiskowe, zrównoważony rozwój, wody powierzchniowe, ścieki oczyszczone, monitoring

ABD EL-GAWAS H., 2014, Aquatic environmental monitoring and removal efficiency of detergents, in: Water Science, vol. 28, Issue 1, p. 51-64.
  Google Scholar

BAGAL M. V., GOGATE P. R., 2013, Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, in: Ultrasonics Sonochemistry, vol. 20, p.1226-1235.
  Google Scholar

BARBUSIŃSKI K., 2013, Zaawansowane utlenianie w procesach oczyszczania wybranych ścieków przemysłowych, Wydawnictwo Politechniki Śląskiej, Monografie, Gliwice.
  Google Scholar

BERNAL-MARTINEZ A., PATUREAU D., DELEGENES J-P., CARRERE H., 2009, Removal of polycyclic aromatic hydrocarbons (PAH) during anaerobic digestion with recirculation of ozonated sewage sludge, in: Journal of Hazardous Material, vol.162, p.1145-1150.
  Google Scholar

BEYER W.N., HEINZ G., REDMON-NORWOOD A.W., 1996, Environmental Contaminants in Wildlife. Interpreting Tissue Concentrations, Lewis Publishers.
  Google Scholar

BUKHARDT-HOLM P., 2011, Linking Water Quality to Human Health and Environment: The Fate of Micropollutants, National University Singapore, Working Paper Series, August 2011.
  Google Scholar

Commission of the European Communities, 1996, Technical guidance document in support of commission directive 93/67/EEC on risk assessment for existing substances, Part II-Environmental risk assessment, Brussels.
  Google Scholar

CZAPLICKA M., 2015, Zaawansowane procesy utleniania w oczyszczaniu wód i ścieków, Instytut metali Nieżelaznych, Gliwice.
  Google Scholar

DE OUDE N.T., 1992, Detergents, Anthropogenic compounds, in: Handbook of Environmental Chemistry, Springer-Verlag, Berlin, vol. 3, part F.
  Google Scholar

EILER R., 2000, Handbook, Chemical Risk Assessment. Health Hazards to Humans, Plants and Animals, Volume 2, Organics, Lewis Publishers.
  Google Scholar

Endosulfan, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/endosulfan (1.02.2018).
  Google Scholar

EU, EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents, http://publications.jrc.ec.europa.eu/repository/bitstream/JRC76400/lb-na-25563-en.pdf (1.02.2018).
  Google Scholar

FENT K, WESTON A.A., CAMINADA D., 2006, Ecotoxicology of human pharmaceuticals. Review, in: Aquatic Toxicology vol. 76 p. 122-159.
  Google Scholar

GEMI, http://www.sdg6monitoring.org/news/presenting-gemi (1.02.2018).
  Google Scholar

GIOS, http://www.gios.gov.pl/pl/stan-srodowiska/raporty-o-stanie-srodowiska (1.02.2018).
  Google Scholar

GROTENHUIS T., MALINA G., SATIJN H.M.C, SMIT M.P.J., POPENDA A., 2003, Surface Water as Receptor for Persistent Organic Pollutants and Heavy Metals, Proceedings of the 8th International FZK/TNO Conference on Contaminated Soil, ConSoil, Gent, Belgium.
  Google Scholar

HELCOM, http://www.helcom.fi/Documents/HELCOM%20at%20work/Projects/BASE/Indicators_TBT.pdf (1.02.2018).
  Google Scholar

HOLDWAY DA., HEFFERMAN J, SMITH A., 2008, Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis, in: Environmental Toxicology, vol. 23, no 2 p. 253-262.
  Google Scholar

IGLESIAS A., NEBOT C., VAZQUEZ B., CORONEL-OLIVARES C., ABUIN C., CEPEDA A., 2014, Monitoring the Presence of 13 Active Compounds in Surface Water Collected from rural areas in North-western Spain, in: International Journal of Environmental Research and Public Health, vol. 11 no 5, p. 5251-5272.
  Google Scholar

Inventory on the presence of pharmaceuticals in Dutch water.
  Google Scholar

KUMMERER K., 2013, Pharmaceuticals in the environment: Sources, Fate, Effects and Risks, Springer.
  Google Scholar

LEONARD A.W., HYNE R.V., LIM R.P., LEIGH K.A., LE J., BECKETT R., 2001, Fate and toxicity of endosulfan in Namoi River water and bottom sediment, in: Journal of Environmental Quality, vol. 30 no 3, p. 750-759.
  Google Scholar

MICROPOLLUTANS, http://micropollutants.com/About-micropollutants (1.02.2018).
  Google Scholar

MICROPOLLUTANTS, http://micropollutants.com/Portals/0/Downloads/Cost-of-treatment-water-micropollutant.pdf (1.02.2018).
  Google Scholar

MIN Y., ZHONGIJAN L., XINGWANG Z., LECHENG L., 2014, Polychlorinated biphenyls in the centralized wastewater treatment plant in a chemical industry zone: source, distribution, and removal, in: Journal of Chemistry, article ID 352675, https://www.doi.org/10.1155/2014/352675.
  Google Scholar

Monitoring Water and Sanitation in the 2030 Agenda for Sustainable Development, An introduction.
  Google Scholar

MURESAN V.A., ROMAN M.D., PICA E.M., 2013, Comparative analysis of the legislative requirements of wastewater disposal in water bodies for Africa and North America, in: International Journal of the Latest Research in Science and Technology, vol. 2, issue 6, p. 32-37.
  Google Scholar

NAGY A.S., SZABO J., VASS I., 2013, Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water of the Raba River, Hungary, in: Journal of Environmental Science and Health A Toxic Hazard Substance Environmental Engineering, vol. 48 no 10, p.1190-1200.
  Google Scholar

NARESH N. M., ADEWUYI Y.,G., 2010, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation, in: Ultrasonics Sonochemistry, vol. 17, p. 990-1003.
  Google Scholar

NIU J., CHEN J., MARTENS D., HENKELMANN B., QUAN X., YANG F., SEIDLITZ H.K., SCHRAMM K.W., 2004, The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies(L) Karst) needles, in: Science of the Total Environment, vol. 322, p. 231-241.
  Google Scholar

POPENDA A., WŁODARCZYK-MAKUŁA M., 2016, Sediments contamination with organic Micropollutants, Current State and Perspectives, in: Civil and Environmental Engineering, vol. 21, no 2, p. 89 -107.
  Google Scholar

POURAN S. R., RAMAN A.A.A, WAN DAUD W.M.A., 2014, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, in: Journal of Cleaner Production, vol. 64, p.24-35.
  Google Scholar

ROGALL H., 2010, Economy of sustainable development Theory and practice, Wydawnictwo Zysk i Spółka, Poznań (in Polish).
  Google Scholar

Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego, Dz.U. 1800, 2014.
  Google Scholar

UNESCO, 2015, Water for a Sustainable World. The United Nations World Water Development report 2015, United Nations Educational, Scientific and Cultural Organization, France.
  Google Scholar

UNITED NATIONS, 2015, The Millennium Development Goals Report, New York 2015.
  Google Scholar

UNITED NATIONS, Sustainable Development Goals, https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (1.02.2018).
  Google Scholar

Ustawa Prawo ochrony środowiska, 2001, Dz.U. 2017, poz. 519.
  Google Scholar

URBANIAK M., KIEDRZYŃSKA E., GROCHO-WALSKI A., 2017, The variability of PCDD/F concentrations in the effluent of wastewater treatment plants with regard to their hydrological environment, in: Environmental Monitoring Assessment, vol. 189 no 2 p. 90,
  Google Scholar

https://www.doi.org/10.1007/s10661-017-5794-9.
  Google Scholar

VALDES M., MARINO D., WUNDERLIN D., SOMOZA G., RONOCO A., CARRIQURI BORDE P., 2015, Screening concentration of E1, E2 and EE2 in sewage effluents and surface waters of the ‘Pampas’ region and the ‘Rio de la Plata’ estuary (Argentina), in: Bulletin of Environmental Contamination Toxicology, vol. 94 no 1, p. 29-33.
  Google Scholar

VIECELLI N. C., LOVATEL E.R, CARDOSO E.M., NASCIMENTO FILHO I., 2011, Quantitative analysis of plasticizers in a wastewater treatment plant: influence of the suspended solids parameter, in: Journal of Brazilian Chemistry Society, Vol. 22, no 6, https://www.doi.org/10.1590/S0103-50532011000600021.
  Google Scholar

VOULVOULIS N., SCRIMSHAW M.D., LESTER J.N., 2014, Removal of organotins during sewage treatment: a case study, in: Environmental Technology, vol. 25 no 6, p. 733-740.
  Google Scholar

WANG C., ZHOU S., WU J., SONG J., SHI Y., LI B., CHEN H., 2017, Surface water polycyclic aromatic hydrocarbons in urban areas of Nanjing, China, in: Water Science & Technology, https://www.doi.org/0.2166/wsr.2017.387.
  Google Scholar

WASTEWATER ORDINANCE, http://www.bmub.bund.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/wastewater_ordinance.pdf (1.02.2018).
  Google Scholar

WHITE PAPER, Aquatic life criteria for contaminants of emerging concern. Part I. General challenges and recommendations, OW/ORD Emerging Contaminants Workgroup, June 03, 2008.
  Google Scholar

WIŚNIOWSKA E., 2008, Effect of chemical stabilisation of sewage sludge on the fate of PAHs, in: Archives of Environmental Protection, vol. 34, no. 3, p. 249-257.
  Google Scholar

WŁODARCZYK-MAKUŁA M., POPENDA A., 2015, Quantitative changes of PAHs in water and in wastewater during treatment processes, Wastewater Treatment, Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs), in: Advances in Water and Wastewater Transport and Treatment, A series, Series Editor Amy J. Forsgren, Xylem, Sweden, Taylor and Francis Group, p. 47-70.
  Google Scholar

WŁODARCZYK-MAKUŁA M., 2015, Physical and chemical fates of organic micropollutants, Scholar’s Press, Saarbrucken.
  Google Scholar


Opublikowane
2018-07-02

Cited By / Share

Włodarczyk-Makuła, M., Wiśniowska, E., & Popenda, A. (2018). Monitoring mikrozanieczyszczeń organicznych jako ważne narzędzie realizacji zrównoważonego rozwoju. Problemy Ekorozwoju Problems of Sustainable Development, 13(2), 191–198. Pobrano z https://ph.pollub.pl/index.php/preko/article/view/5028

Autorzy

Maria Włodarczyk-Makuła 

Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska

Autorzy

Ewa Wiśniowska 

Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska

Autorzy

Agnieszka Popenda 

Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska

Statystyki

Abstract views: 13
PDF downloads: 3