Monitoring mikrozanieczyszczeń organicznych jako ważne narzędzie realizacji zrównoważonego rozwoju
Maria Włodarczyk-Makuła
Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)
Ewa Wiśniowska
Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)
Agnieszka Popenda
Katedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa (Polska)
Abstrakt
Zasoby wodne są kluczowym elementem zrównoważonego rozwoju. Z punktu widzenia ekonomii brak czystej wody prowadzi do długofalowych skutków dla rozwoju i wzrostu ludzkości. Kluczowym pytaniem jest co można zrobić, aby rozwój ekonomiczny odbywał się w sposób pozwalający na zachowanie zasobów naturalnych dla przyszłych pokoleń? Postęp w sposobie monitorowania będzie krytyczny dla sprawdzenia i oceny stopnia realizacji celów zrównoważonego rozwoju. Monitorowanie stanu istniejącego nie jest odpowiednio skuteczną metodą. Lepszą strategią jest monitorowanie zrzutów zanieczyszczeń, tak aby można było im zapobiegać lub je ograniczać. Obecnie tego rodzaju monitoring nie jest stosowany w odniesieniu do odpływów z oczyszczalni ścieków komunalnych pomimo tego, że wyniki badań wskazują, że organiczne mikrozanieczyszczenia występują powszechnie w oczyszczonych ściekach. Z tego względu należałoby wprowadzić obowiązek monitorowania stężeń wybranych mikrozanieczyszczeń w ściekach oczyszczonych. Zakres monitoringu powinien być dobrany indywidualnie dla każdej oczyszczalni ścieków w zależności od lokalnych czynników, co pozwoli na realizację zasady zrównoważonego rozwoju. Dobrym kierunkiem jest natomiast wprowadzony w Polsce obowiązek monitorowania wybranych organicznych mikrozanieczyszczeń w wodach powierzchniowych i podziemnych.
Słowa kluczowe:
mikrozanieczyszczenia organiczne, bezpieczeństwo środowiskowe, zrównoważony rozwój, wody powierzchniowe, ścieki oczyszczone, monitoringBibliografia
ABD EL-GAWAS H., 2014, Aquatic environmental monitoring and removal efficiency of detergents, in: Water Science, vol. 28, Issue 1, p. 51-64.
Google Scholar
BAGAL M. V., GOGATE P. R., 2013, Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, in: Ultrasonics Sonochemistry, vol. 20, p.1226-1235.
Google Scholar
BARBUSIŃSKI K., 2013, Zaawansowane utlenianie w procesach oczyszczania wybranych ścieków przemysłowych, Wydawnictwo Politechniki Śląskiej, Monografie, Gliwice.
Google Scholar
BERNAL-MARTINEZ A., PATUREAU D., DELEGENES J-P., CARRERE H., 2009, Removal of polycyclic aromatic hydrocarbons (PAH) during anaerobic digestion with recirculation of ozonated sewage sludge, in: Journal of Hazardous Material, vol.162, p.1145-1150.
Google Scholar
BEYER W.N., HEINZ G., REDMON-NORWOOD A.W., 1996, Environmental Contaminants in Wildlife. Interpreting Tissue Concentrations, Lewis Publishers.
Google Scholar
BUKHARDT-HOLM P., 2011, Linking Water Quality to Human Health and Environment: The Fate of Micropollutants, National University Singapore, Working Paper Series, August 2011.
Google Scholar
Commission of the European Communities, 1996, Technical guidance document in support of commission directive 93/67/EEC on risk assessment for existing substances, Part II-Environmental risk assessment, Brussels.
Google Scholar
CZAPLICKA M., 2015, Zaawansowane procesy utleniania w oczyszczaniu wód i ścieków, Instytut metali Nieżelaznych, Gliwice.
Google Scholar
DE OUDE N.T., 1992, Detergents, Anthropogenic compounds, in: Handbook of Environmental Chemistry, Springer-Verlag, Berlin, vol. 3, part F.
Google Scholar
EILER R., 2000, Handbook, Chemical Risk Assessment. Health Hazards to Humans, Plants and Animals, Volume 2, Organics, Lewis Publishers.
Google Scholar
Endosulfan, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/endosulfan (1.02.2018).
Google Scholar
EU, EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents, http://publications.jrc.ec.europa.eu/repository/bitstream/JRC76400/lb-na-25563-en.pdf (1.02.2018).
Google Scholar
FENT K, WESTON A.A., CAMINADA D., 2006, Ecotoxicology of human pharmaceuticals. Review, in: Aquatic Toxicology vol. 76 p. 122-159.
Google Scholar
GEMI, http://www.sdg6monitoring.org/news/presenting-gemi (1.02.2018).
Google Scholar
GIOS, http://www.gios.gov.pl/pl/stan-srodowiska/raporty-o-stanie-srodowiska (1.02.2018).
Google Scholar
GROTENHUIS T., MALINA G., SATIJN H.M.C, SMIT M.P.J., POPENDA A., 2003, Surface Water as Receptor for Persistent Organic Pollutants and Heavy Metals, Proceedings of the 8th International FZK/TNO Conference on Contaminated Soil, ConSoil, Gent, Belgium.
Google Scholar
HELCOM, http://www.helcom.fi/Documents/HELCOM%20at%20work/Projects/BASE/Indicators_TBT.pdf (1.02.2018).
Google Scholar
HOLDWAY DA., HEFFERMAN J, SMITH A., 2008, Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis, in: Environmental Toxicology, vol. 23, no 2 p. 253-262.
Google Scholar
IGLESIAS A., NEBOT C., VAZQUEZ B., CORONEL-OLIVARES C., ABUIN C., CEPEDA A., 2014, Monitoring the Presence of 13 Active Compounds in Surface Water Collected from rural areas in North-western Spain, in: International Journal of Environmental Research and Public Health, vol. 11 no 5, p. 5251-5272.
Google Scholar
Inventory on the presence of pharmaceuticals in Dutch water.
Google Scholar
KUMMERER K., 2013, Pharmaceuticals in the environment: Sources, Fate, Effects and Risks, Springer.
Google Scholar
LEONARD A.W., HYNE R.V., LIM R.P., LEIGH K.A., LE J., BECKETT R., 2001, Fate and toxicity of endosulfan in Namoi River water and bottom sediment, in: Journal of Environmental Quality, vol. 30 no 3, p. 750-759.
Google Scholar
MICROPOLLUTANS, http://micropollutants.com/About-micropollutants (1.02.2018).
Google Scholar
MICROPOLLUTANTS, http://micropollutants.com/Portals/0/Downloads/Cost-of-treatment-water-micropollutant.pdf (1.02.2018).
Google Scholar
MIN Y., ZHONGIJAN L., XINGWANG Z., LECHENG L., 2014, Polychlorinated biphenyls in the centralized wastewater treatment plant in a chemical industry zone: source, distribution, and removal, in: Journal of Chemistry, article ID 352675, https://www.doi.org/10.1155/2014/352675.
Google Scholar
Monitoring Water and Sanitation in the 2030 Agenda for Sustainable Development, An introduction.
Google Scholar
MURESAN V.A., ROMAN M.D., PICA E.M., 2013, Comparative analysis of the legislative requirements of wastewater disposal in water bodies for Africa and North America, in: International Journal of the Latest Research in Science and Technology, vol. 2, issue 6, p. 32-37.
Google Scholar
NAGY A.S., SZABO J., VASS I., 2013, Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water of the Raba River, Hungary, in: Journal of Environmental Science and Health A Toxic Hazard Substance Environmental Engineering, vol. 48 no 10, p.1190-1200.
Google Scholar
NARESH N. M., ADEWUYI Y.,G., 2010, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation, in: Ultrasonics Sonochemistry, vol. 17, p. 990-1003.
Google Scholar
NIU J., CHEN J., MARTENS D., HENKELMANN B., QUAN X., YANG F., SEIDLITZ H.K., SCHRAMM K.W., 2004, The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies(L) Karst) needles, in: Science of the Total Environment, vol. 322, p. 231-241.
Google Scholar
POPENDA A., WŁODARCZYK-MAKUŁA M., 2016, Sediments contamination with organic Micropollutants, Current State and Perspectives, in: Civil and Environmental Engineering, vol. 21, no 2, p. 89 -107.
Google Scholar
POURAN S. R., RAMAN A.A.A, WAN DAUD W.M.A., 2014, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, in: Journal of Cleaner Production, vol. 64, p.24-35.
Google Scholar
ROGALL H., 2010, Economy of sustainable development Theory and practice, Wydawnictwo Zysk i Spółka, Poznań (in Polish).
Google Scholar
Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego, Dz.U. 1800, 2014.
Google Scholar
UNESCO, 2015, Water for a Sustainable World. The United Nations World Water Development report 2015, United Nations Educational, Scientific and Cultural Organization, France.
Google Scholar
UNITED NATIONS, 2015, The Millennium Development Goals Report, New York 2015.
Google Scholar
UNITED NATIONS, Sustainable Development Goals, https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (1.02.2018).
Google Scholar
Ustawa Prawo ochrony środowiska, 2001, Dz.U. 2017, poz. 519.
Google Scholar
URBANIAK M., KIEDRZYŃSKA E., GROCHO-WALSKI A., 2017, The variability of PCDD/F concentrations in the effluent of wastewater treatment plants with regard to their hydrological environment, in: Environmental Monitoring Assessment, vol. 189 no 2 p. 90,
Google Scholar
https://www.doi.org/10.1007/s10661-017-5794-9.
Google Scholar
VALDES M., MARINO D., WUNDERLIN D., SOMOZA G., RONOCO A., CARRIQURI BORDE P., 2015, Screening concentration of E1, E2 and EE2 in sewage effluents and surface waters of the ‘Pampas’ region and the ‘Rio de la Plata’ estuary (Argentina), in: Bulletin of Environmental Contamination Toxicology, vol. 94 no 1, p. 29-33.
Google Scholar
VIECELLI N. C., LOVATEL E.R, CARDOSO E.M., NASCIMENTO FILHO I., 2011, Quantitative analysis of plasticizers in a wastewater treatment plant: influence of the suspended solids parameter, in: Journal of Brazilian Chemistry Society, Vol. 22, no 6, https://www.doi.org/10.1590/S0103-50532011000600021.
Google Scholar
VOULVOULIS N., SCRIMSHAW M.D., LESTER J.N., 2014, Removal of organotins during sewage treatment: a case study, in: Environmental Technology, vol. 25 no 6, p. 733-740.
Google Scholar
WANG C., ZHOU S., WU J., SONG J., SHI Y., LI B., CHEN H., 2017, Surface water polycyclic aromatic hydrocarbons in urban areas of Nanjing, China, in: Water Science & Technology, https://www.doi.org/0.2166/wsr.2017.387.
Google Scholar
WASTEWATER ORDINANCE, http://www.bmub.bund.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/wastewater_ordinance.pdf (1.02.2018).
Google Scholar
WHITE PAPER, Aquatic life criteria for contaminants of emerging concern. Part I. General challenges and recommendations, OW/ORD Emerging Contaminants Workgroup, June 03, 2008.
Google Scholar
WIŚNIOWSKA E., 2008, Effect of chemical stabilisation of sewage sludge on the fate of PAHs, in: Archives of Environmental Protection, vol. 34, no. 3, p. 249-257.
Google Scholar
WŁODARCZYK-MAKUŁA M., POPENDA A., 2015, Quantitative changes of PAHs in water and in wastewater during treatment processes, Wastewater Treatment, Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs), in: Advances in Water and Wastewater Transport and Treatment, A series, Series Editor Amy J. Forsgren, Xylem, Sweden, Taylor and Francis Group, p. 47-70.
Google Scholar
WŁODARCZYK-MAKUŁA M., 2015, Physical and chemical fates of organic micropollutants, Scholar’s Press, Saarbrucken.
Google Scholar
Autorzy
Maria Włodarczyk-MakułaKatedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska
Autorzy
Ewa WiśniowskaKatedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska
Autorzy
Agnieszka PopendaKatedra Chemii, Technologii Wody i Ścieków, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Dąbrowskiego 69, 42-200 Częstochowa Polska
Statystyki
Abstract views: 18PDF downloads: 5
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.