Antybiotyki w środowisku jako jedna z barier dla zrównoważonego rozwoju
Joanna Lach
Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa (Polska)
Longina Stępniak
Czestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa (Polska)
Agnieszka Ociepa-Kubicka
Czestochowa University of Technology, Faculty of Management, Ul. Armii Krajowej 19b, 42-201 Częstochowa (Polska)
Abstrakt
W pracy przeanalizowano obecność antybiotyków w ściekach surowych (szpitalnych, z produkcji leków, komunalnych), oczyszczonych, wodach powierzchniowych i wodzie pitnej na świecie. Stężenia antybiotyków analizowane w ściekach z produkcji leków dochodziły do 900 µ/dm3, w ściekach szpitalnych do 124 µ/dm3 i komunalnych do 64 µ/dm3. Stężenia antybiotyków w ściekach oczyszczonych dochodziły do 260 ng/dm3. Przedstawiono również obecność antybiotyków w wodach powierzchniowych. Najczęściej identyfikowanymi lekami były: ciprofloxacin, erytromycyna, norfloxacin, sulfamethoxazole i trimethoprim. Maksymalne stężenia antybiotyków w wodach powierzchniowych dochodzą nawet do 2 µg/dm3. W większości przypadkach identyfikowane antybiotyki występowały w ilości od kilku do kilkudziesięciu ng/dm3, rzadziej w ilości kilkuset ng/dm3. Obecność antybiotyków w wodzie pitnej jest identyfikowana, podobnie jak w przypadku ścieków na całym świecie np. w Chinach, USA, Niemczech, Kanadzie, Francji. Odnotowano bardzo wysokie stężenia antybiotyków Chinach w Guangzhou dochodzące do 679,7 ng/dm3 (ciprofloxacin), ale również w USA (triclosan – 734 ng/dm3). W większości przypadków antybiotyki w wodach są w znacznie niższych stężeniach. Konsekwencją zanieczyszczenia środowiska antybiotykami jest lekooporność wielu szczepów bakterii i w konsekwencji coroczna śmierć 25 000 osób w Unii Europejskiej i około 700000 na całej kuli ziemskiej. Nie do końca poznane są inne skutki obecności antybiotyków w środowisku. Przypisuje się temu zanieczyszczeniu właściwości rakotwórcze, teratogenne lub mutagenne.
Słowa kluczowe:
antybiotyki, zanieczyszczenie wody, lekoopornośćBibliografia
ADAMEK E., et al., 2015, Efektywność procesów biodegradacji zastosowanych do usuwania leków przeciwbakteryjnych ze ścieków i wody rzecznej, in: Proceedings of ECOpole, vol. 9, no. 1, p. 155-162.
Google Scholar
AHMAD M. et al., 2012, Role of hospital effluents in the contribution of antibiotics and antibiotic resistant bacteria to the aquatic environment, in: Pak. J. Nutr., vol.11, no. 12, p. 1177-1182.
Google Scholar
ASHFAQ M. et al., 2016, Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan, in: Environ. Toxicol. Pharmacol., vol. 42, p. 6-22.
Google Scholar
BARBUSIŃSKI K., NALEWAJEK T., 2011, Oporność szczepów Escherichia coli na wybrane antybiotyki w ściekach komunalnych, in: Gaz, Woda i Technika Sanitarna, vol. 11, p. 442-446.
Google Scholar
BBOSA G.S., MWEBAZA N., ODDA J., et al., 2014, Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance, in: Health (Irvine Calif), vol. 6, p. 410-425.
Google Scholar
BIELAS S., LACH J., 2014, Zanieczyszczenie środowiska wodnego antybiotykami, in: Technologia Wody, vol. 3, no. 35, p. 23-29.
Google Scholar
BIELIŃSKA M., NAŁĘCZ-JAWECKI G., 2009, Zanieczyszczenie środowiska przyrodniczego lekami. Ocena toksyczności trzech fluorochinolonów dla rzęsy drobnej Lemna Minor, in: Biul. Wydz. Farm. WUM, vol. 4, no. 24-30.
Google Scholar
BIERNASIAK J., ŚLIŻEWSKA K., LIBUDZISZ Z., 2010, Negatywne skutki stosowania antybiotyków, in: Postępy Nauk Rolniczych, vol. 3, p. 105-117.
Google Scholar
BROWN K.D. et al., 2006, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, in: Sci Total Environ., vol. 366, p. 772-783.
Google Scholar
BRUTON L.L., LAZO J.S., PARKER K.L. 2007, Farmakologia Goodmana & Gilmana, Wydawnictwo Czelej, Lublin.
Google Scholar
BULL R.J. et al., 2011, Therapeutic dose as the point of departure in assessing potential health hazards from drugs in drinking water and recycled municipal wastewater, in: Regul. Toxicol. Pharmacol., vol. 60, np. 1, p. 1-19.
Google Scholar
CALZA P. et al. 2013, Fate of Selected Pharmaceuticals in River Waters, in: Environ. Sci. Pollut. Res. Int. Vol. 20, no. 4, 2262-2270.
Google Scholar
CARMOSINI, N., LEE, L.S., 2009. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials, in: Chemosphere, vol. 77, no. 6, p. 813-820.
Google Scholar
CARVALHO I.T. SANTOS C.L., 2016, Antibiotics in the aquatic environments: A review of the European scenario, in: Environ. Int., vol. 94, p. 736-757.
Google Scholar
CHANG X. et. al. 2010, Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China, in: Environ. Pollut., vol.158, no. 5, p. 1444-1450.
Google Scholar
DEO R.P., HALDEN R.U., 2013, Pharmaceuticals in the Built and Natural Water Environment of the United States, in: Water, vol. 5, no.3, p. 1346-1365.
Google Scholar
DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in:. Mol. Biol. Rev. vol. 74, p. 417-433.
Google Scholar
DAVIES J., DAVIES D., 2010, Origins and evolution of antibiotic resistance, in: Mol. Biol. Review, vol. 74, p. 413-433.
Google Scholar
DUONG H.A. et al., 2008, Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam, in: Chemosphere, vol.72, no. 6, p. 968-973.
Google Scholar
ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals, 2015, in: EFSA J., vol. 13, p. 4006-4114.
Google Scholar
FENT K., WESTON A.A., CAMINADA D., 2006, Ecotoxicology of human pharmaceuticals, in: Aquatic Toxicology, vol. 76, no. 2, p. 122-159.
Google Scholar
FRENCH, G.L., 2010. The continuing crisis in antibiotic resistance, in: Int. J. Antimicrob. Agents., vol. 36, no. 3, p. 3-7.
Google Scholar
GAFFNEY V.D.J. et al., 2014, Occurrence of pharmaceuticals in a water supply system and related human health risk assessment, in: Water Res., vol. 72, p. 199-210.
Google Scholar
GOLOVKO O. et al., 2014, Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant, in: Chemosphere, vol. 111, p. 418-426.
Google Scholar
GRACIA-LOR E. et al., 2012, Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia, in: Chemosphere, vol.87, no. 5, p. 453-462.
Google Scholar
GRENNI P., ANCONA V., CARACCIOLO A.B., 2017, Ecological effects of antibiotics on natural ecosystems: A review, in: Microchemical Journal.
Google Scholar
GROSS, M., 2013, Antibiotics in crisis, in: Curr. Biol., vol. 23, p. R1063-R1065.
Google Scholar
GUERRA P. et al., 2014, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, in: Sci Total Environ., vol. 473-474, p. 235-243.
Google Scholar
HALLING-SORENSEN B. et al., 1998, Occurrence, fate, and effects of pharmaceutical substances in the environment – a review, in: Chemosphere, vol. 36, no. 2, p. 357-393.
Google Scholar
HEBERER T., 2002, Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data, in: Toxicol. Lett., vol. 131, p. 5-17.
Google Scholar
JANIEC W., 2005, Kompendium farmakologii, Wydawnictwo Lekarskie PZWL, Warsaw.
Google Scholar
JIA A., WAN Y., XIAO Y., HU J., 2012, Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, in: Water Res., vol.46 no.2, p. 387-394.
Google Scholar
JANIEC R., CEGIEŁA U., FOLWARCZNA J., 2010, Kompendium Farmakologii, Wydawnictwo Lekarskie PZWL.
Google Scholar
JONES O.A., LESTER J.N., VOULVOULIS N., 2005, Pharmaceuticals: a threat to drinking water? in: Trends Biotechnol., vol. 23, p. 163-167.
Google Scholar
KASPRZYK-HORDERN B., DINSDALE R.M., GUWY A.J., 2009, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters, in: Water Res. Vol. 43, no. 2, p. 363-380.
Google Scholar
KEMPER N., 2008, Veterinary antibiotics in the aquatic and terrestrial environment, in: Ecol. Indic., no. 8, p. 1-13.
Google Scholar
KLEYWEGT S. et al., 2011, Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada--occurrence and treatment efficiency, in: Sci. Total Environ., vol. 409, no. 8, p. 1481-1488.
Google Scholar
KOLPIN D.W. et al., 2002, Pharmaceuticals, hormones, and others organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance, in: Environ. Sci. Technol., vol. 36, p. 1202-1211.
Google Scholar
KÜMMERER K., 2009, Antibiotics in the aquatic environment – A review – Part I, in: Chemosphere, vo. 75, p. 417-434.
Google Scholar
LARSSON D.G.J., DE PEDRO C., PAXEUS N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals, in: J. Hazard. Mater, vol. 148, no. 3, p. 751-755.
Google Scholar
LA TORRE A., et al., 2012, An approach for mapping the vulnerability of European Union Soils to Antibiotic Contamination, in: Science of the Total Environment, 414, p. 672-679.
Google Scholar
LI X., WATANABE N. et al., 2013, Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California, in: Environ Monit Assess., vol. 186, p. 1253-1260.
Google Scholar
LI W.C., 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, in: Environ. Pollut., vol. 187, p. 193-201.
Google Scholar
LI W., SHI Y., GAO L., LIU J., CAI Y., 2013, Occurrence and removal of antibiotics in amunicipal wastewater reclamation plant in Beijing, China, in: Chemosphere, vol. 92, no. 435-444.
Google Scholar
LIEWSKA K., BIERNASIAK J., LIBUDZISZ Z., 2006, Probiotyki jako alternatywa dla antybiotyków, in: Zeszyty Naukowych Politechniki Łódzkiej, z. 70, nr 984, p. 79-91.
Google Scholar
LINDBERG R. et al., 2004, Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards, in: Chemosphere, vol. 57, no. 10, p. 1479-1488.
Google Scholar
LOCATELLI M.A., SODRE F.F., JARDIM W.F., 2011, Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry, in: Arch Environ Contam Toxicol., vol. 60, no. 3, p. 385-393.
Google Scholar
LOOS R., WOLLGAST J., HUBER T., HANKE G., 2007, Polar Herbicides, Pharmaceutical Products, Perfluorooctanesulfonate (PFOS), Perfluorooctanoate (PFOA), and Nonylphenol and Its Carboxylates and Ethoxylates in Surface and Tap Waters Around Lake Maggiore in Northern Italy, in: Anal. Bioanal. Chem., vol. 387, np. 4., p. 1469-1478.
Google Scholar
LORAINE G, PETTIGROVE M., 2006, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California, in: Environ. Sci. Technol., vol. 40, p. 687-695.
Google Scholar
MADUREIRA V.T., BARREIRO J.C., ROCHA M.J., ROCHA E., 2010, Spatiotemporal distribution of pharmaceuticals in the Douro River estuary (Portugal), in: Sci. Total Environ., vol. 408, no. 22, p. 5513-5520.
Google Scholar
MANAGAKI S. et al., 2007, Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta, in: Environ Sci Technol.,vol. 41, p. 8004-8010.
Google Scholar
MARTÍNEZ J.L., 2009, Environmental pollution by antibiotics and by antibiotic resistance determinants, in: Environ. Pollut., vol. 157, p. 2893-2902.
Google Scholar
MED-EUWI, 2007, Mediterranean wastewater reuse report.
Google Scholar
MICHAEL I. et al. 2013, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, in: Water Res., vol. 47, p. 957-995.
Google Scholar
MOMPELAT S., LE BOT B., THOMAS O., 2009, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, in: Environ. Int., vol. 35, p. 803-814;
Google Scholar
MURATA A., TAKADA H., MUTOH K., HOSODA H., 2011, Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers, in: Sci. Total Environ., vol. 409, no. 24., p. 5305-5312.
Google Scholar
OECD, 2015, Antimicrobial resistance in G7 countries and beyond: Economic issues, policies and options for action, OECD Paris.
Google Scholar
NÖDLER K., LICHA T., FISCHER S., WAGNER B., 2011, A case study on the correlation of micro-contaminants and potassium in the Leine River (Germany), in: Applied Geochemistry, vol. 26, no. 12, p. 2172-2180.
Google Scholar
O'NEILL J., 2014, Tackling a crisis for the health and wealth of nations, in: Antimicrobial Resistance, http://amrreview.org/Publications, (01.06.2017).
Google Scholar
OSEK J., WIECZOREK K., 2015, Spożycie leków przeciwbakteryjnych w Europie i występowanie oporności na te leki bakterii izolowanych od ludzi, zwierząt i z żywności w 2012 r., in: Życie Weterynaryjne, vol. 90, no. 9, p. 601-603.
Google Scholar
PADHYE L.P., YAO H., KUNG'U F.T., HUANG C.H., 2014, Year-long evaluation on the occurrence and fate of pharmaceuticals personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant, in: Water Res., vol. 51, p. 266-276.
Google Scholar
REEMTSMA T., JEKEL M., 2006, Organic pollutants in the water cycle, WILEY-VCH, Weinheim.
Google Scholar
SANTOSA L.H. et al., 2010, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, in: J. Hazard. Mater. vol. 175, no. 45-95.
Google Scholar
SOKÓŁ A., 2013, Badania szybkości degradacji wybranych leków w układach modelowych i w próbkach wód rzecznych, Uniwersytet Białostocki.
Google Scholar
STEC M., 2015, Antibiotics in aquaculture, in: Słupskie Prace Biologiczne, no. 12 p. 209-216.
Google Scholar
SUKUL P, SPITELLER M., 2006, Sulfonamides in the environment as veterinary drugs, in: Rev Environ Contm Toxicol., vol. 187, p. 67-101.
Google Scholar
TAMTAM F., MERCIER F., LE BOT B., EURIN J., 2008, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, in: Science of The Total Environment, vol. 393, no. 1, p. 84-95.
Google Scholar
TERNES T., 1998, Occurrence of drugs in German sewage treatment plants and rivers, in: Water Research, vol. 32, p. 3245-3260.
Google Scholar
TERNES T., 2001, Analytical methods for the determination of pharmaceuticals in aqueous environmental samples, in: Trends in Analytical Chemistry, vol. 20, p. 419-433.
Google Scholar
VERGEYNST L. et al., 2015. Multiresidue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study, in: Chemosphere vol. 119, p. S2-S8.
Google Scholar
VERLICCHI P. et al., 2012, Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, in: Sci. Total Environ., vol. 430, p. 109-118.
Google Scholar
VERLICCHI P., AL AUKIDY M., ZAMBELLO E., 2012, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review, in: Sci. Total Envirom., vol. 429, p. 123-155.
Google Scholar
VIENO N.M., TUHKANEN T., KRONBERG L., 2006, Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection, in: J. Chromatogr. A., vol. 1134, p. 101-111.
Google Scholar
WANG C.A. et al., 2011, Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry, in: Water Res. vol. 45, p. 1818-1828.
Google Scholar
WATKINSON J., MURBY E., COSTANZO S., 2007, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling, in: Water Res., vol. 41, p. 4164-4176.
Google Scholar
WATKINSON J., MURBY E.J., KOLPIN D.W., COSTANZO S.D., 2009, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, in: Sci. Total Environ., vol. 407, no. 8, p. 2711-2723.
Google Scholar
WEI Y. et al. 2014, Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry in: Front. Environ. Sci. Eng., vol. 8 no. 3, p. 357-371.
Google Scholar
WHO, 2014, Antimicrobial resistance: Global report on surveillance, WHO Geneva.
Google Scholar
WOLLENBERGER L., HALLING-SØRENSEN B., KUSK K.O., 2000, Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, in: Chemosphere, vol. 40, p. 723-730.
Google Scholar
WU M. et al., 2016, Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water, in: Ecotoxicol. Environ. Safety, vol. 132, p. 132-139.
Google Scholar
Ye Z.Q., WEINBERG H.S., MEYER M.T., 2007, Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry, in: Anal. Chem., vol. 79, no. 3, p. 1135-1144.
Google Scholar
YIRUHAN et al., 2010, Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao, Environ. Pollut., vol. 158, p. 2350-2358.
Google Scholar
YU F., LI Y., HAN S, MA J., 2016, Adsorptive removal of antibiotics from aqueous solution using carbon materials, in: Chemosphere, vol. 153, p. 365-385.
Google Scholar
ZHAO S. et al., 2016, Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China, in: Sci. Total Environ., vol. 569–570, p.1350-1358.
Google Scholar
ZHOU L.J. et al., 2011, Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China, in: Environmental Pollution., vol. 159, no.7, p. 1877-1885.
Google Scholar
ZHENG Q. et al., 2012, Occurrence and distribution of antibiotics in the Beibu Gulf, China: impacts of river discharge and aquaculture activities, in: Marine Environmental Research, vol. 78, p. 26-33.
Google Scholar
ZUCCATO E. et al., 2006, Pharmaceuticals in the Environment in Italy: Causes, Occurrence, Effects and Control, in: Environ Sci & Pollut Res., vol. 13, no.1, 15-21.
Google Scholar
ŻABICKA D., LITERACKA E., BOJARSKA K., 2012, MDR, XDR, PDR – jednolite, międzynarodowe definicje nabytej oporności drobnoustrojów na antybiotyki, in: Aktualności NPOA, vol. 3, p. 1-7.
Google Scholar
Autorzy
Joanna LachCzestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa Polska
Autorzy
Longina StępniakCzestochowa University of Technology, Faculty of Infrastructure and Environment, ul. Brzeźnicka 60a, Częstochowa Polska
Autorzy
Agnieszka Ociepa-KubickaCzestochowa University of Technology, Faculty of Management, Ul. Armii Krajowej 19b, 42-201 Częstochowa Polska
Statystyki
Abstract views: 68PDF downloads: 42
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.