Carbon Sequestration in Soil as a Sustainable Way of Greenhouse Effect Mitigation
Article Sidebar
Open full text
Main Article Content
DOI
Authors
magdalena.myszura@up.lublin.pl
magdalena.myszura@up.lublin.pl
magdalena.myszura@up.lublin.pl
magdalena.myszura@up.lublin.pl
Abstract
Due to natural mechanisms of transformation the carbon compounds contained in the atmosphere into the humus, soil is an important factor controlling the concentration of atmospheric CO2. The mass of carbon contained in organic matter accumulated in the surface layer of the Earth’s crust is greater than the mass of this element in the atmosphere or biomass of all the organisms living over the globe. Over the recent years, much attention has been paid to the role of soils in limiting the reasons of climate changes, considering the possibility of increasing carbon sequestration in this matrix. This way of approaching the problem of the greenhouse effect, which does not require an involvement of complex and expensive technological solutions aimed at capturing and storing the atmospheric CO2, and additionally contributing to improving the quality of soil and water environment, and soil productivity is fully sustainable and combines the environmental, economic and social issues.
Keywords:
References
BALESTRINI R., LUMINI E., BORRIELLO R., BIANCIOTTO V., 2015, Plant-Soil Biota Interactions, in: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), Academic Press, p. 311-338. DOI: https://doi.org/10.1016/B978-0-12-415955-6.00011-6
BANWART S.A., BERNASCONI S.M., BLUM W.E.H., DE SOUZA D.M., CHABAUX F., DUFFY C., et al., 2017, Quantifying and managing soil functions in Earth’s critical zone – combining experimentation and mathematical modelling. Soil functions in Earth’s critical zone: key results and conclusions, in: Adv. Agron., 142, p. 1-27. DOI: https://doi.org/10.1016/bs.agron.2016.11.001
BATJES N.H., 2013, Reader for the soil carbon benefits module, in: Proceedings of the ISRIC Spring School, April 22-26, 2013, Wageningen University Campus, The Netherlands, p. 1-16.
BRYANT L., STOCKWEL, R., WHITE T., 2013, Counting Cover Crops, National Wildlife Federation, Washington DC, https://grasslandoregon.com/assets/counting-cover-crops.pdf (22.05.2020).
BURRAS C.L., KIMBLE J.M., LAL R., MAUSBACH M.J., UEHARA G., CHENG H.H., KISSEL D.E., LUXMOORE R.J., RICE C.W., WILDING LP., 2001, Carbon Sequestration: Position
of the Soil Science Society of America, in: Agronomy Publications, 59, p. 1-4.
CEL W., CZECHOWSKA-KOSACKA A., ZHANG T., 2016, Sustainable mitigation of greenhouse gases emission, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 11(1), p. 173-176.
CHABBI A., RUMPEL C., KOGEL-KNABNER I., 2009, Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, in: Soil Biol. Biochem., 41, p. 256-261. DOI: https://doi.org/10.1016/j.soilbio.2008.10.033
CHRISTENSEN B.T., 1988, Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions, in: Biol. Fertil.Soils, 5, p. 304-307. DOI: https://doi.org/10.1007/BF00262136
COLLINS H.P., ELLIOTT E.T., PAUSTIAN K., BUNDY L.G., DICK W.A., HUGGINS D.R., SMUCKER A.J.M., 2000, Soil carbon pools and fluxes in long-term corn belt agroecosystems, in: Soil Biol. Biochem., 32, p. 157-68. DOI: https://doi.org/10.1016/S0038-0717(99)00136-4
CONANT R.T., RYAN M.G., ÅGREN G.I., BIRGE H.E., DAVIDSON E.A., ELIASSON P.E., et al., 2011, Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward, in: Glob. Chang. Biol., 17 (11), p. 3392-3404. DOI: https://doi.org/10.1111/j.1365-2486.2011.02496.x
CONANT R.T., PAUSTIAN K., ELLIOTT E.T., 2001, Grassland management and conversion into grassland: effects on soil carbon, in: Ecological Applications, 11, p. 343-355. DOI: https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
CREWS T.E., RUMSEY B.E., 2017, What agriculture can learn from native ecosystems in building soil organic matter: A review, in: Sustainability, 9(4), p. 578. DOI: https://doi.org/10.3390/su9040578
CVETKOV M., ŠANTAVEC I., KOCJAN AČKO D., TAJNŠEK A., 2010, Soil organic matter content according to different management system within long-term experiment, in: Acta Agric. Slovenica, 95, p. 79-88. DOI: https://doi.org/10.14720/aas.2010.95.1.14804
DAVIDSON E.A., JANSSENS I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, in: Nature, 440(7081), p. 165-173. DOI: https://doi.org/10.1038/nature04514
DIACONO M., MONTEMURRO F., 2010, Long term effect of organic amendments on soil fertility. A Review, in: Gron. Sustain. Dev., 30, p. 411-422. DOI: https://doi.org/10.1051/agro/2009040
DIXON R.K., BROWN S., HONGHTON R.A., SOLOMON A.M., TREXLER M.C., WIŚNIEWSKI J., 1994, Carbon pools and flux of global forest ecosystems, in: Science, 263, p. 185-190. DOI: https://doi.org/10.1126/science.263.5144.185
DOBRZAŃSKI H., ZAWADZKI S. (eds.), 1995, Gleboznawstwo, 1995, PWRiL, Warszawa
DOETTERL S., SIX J., VAN OOST K., CASANOVA-KATNY A., BOUDIN M., BOECKX P., STEVENTS A., MERCKX R., CASANOVA M.A., MUÑOZ C., ZAGAL E., 2015, Soil carbon storage
controlled by interactions between geochemistry and climate, in: Nat. Geosci., 8(10), p. 780-783. DOI: https://doi.org/10.1038/ngeo2516
DORADO J., ZANCADA M.C., ALMENDROS G., LO´PEZ-FANDO C., 2003, Changes in soil properties and humic substances after long term amendments with manure and crop residues in dryland farming systems, in: Journal of Plant Nutrition and Soil Science, 166, p. 31-38. DOI: https://doi.org/10.1002/jpln.200390009
ECCP, 2003, European Climate Change Programme, Final Report of Working Group: Sinks Related to Agricultural Soils https://ec.europa.eu/clima/sites/clima/files/eccp/second/docs/finalreport_agricsoils_en.pdf (23.05.2020).
EEA 2017, Soil, land and climate change, https://www.eea.europa.eu/signals/signals-2019-content-list/articles/soil-land-and-climate-change (5.06.2020).
GOH K.M., 2004, Carbon sequestration and stabilization in soils. Implications for soil productivity and climate change, in: Soil Science and Plant Nutrition, 50(4), p. 467-476. DOI: https://doi.org/10.1080/00380768.2004.10408502
GONG W., YAN X.Y., WANG J.Y., HU T.X., GONG Y.B., 2009, Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain, in: Plant and Soil, 314, p. 67-76 https://doi.org/10.1016/s0038-0717(03)00186-x DOI: https://doi.org/10.1007/s11104-008-9705-2
GREGORICH E.G., CARTER M.R., DORAN J.W., PANKHURST C.E., DWYER L.M., 1997, Biological attributes of soil quality, in: Dev. Soil Sci., 25, p. 81-113. DOI: https://doi.org/10.1016/S0166-2481(97)80031-1
HANSEN J., KHARECHA P., SATO M., MASSONDELMOTTE V., ACKERMAN F., BEERLING D.J, et al., 2013, Assessing ‘Dangerous Climate Change’: Required reduction of carbon emissions to protect young people, future generations and nature, ed. Añel J.A., in: PLOS One, 8(12), p. 1-26. DOI: https://doi.org/10.1371/journal.pone.0081648
HINES R., 1991, On Valuing Nature. Accounting, in: Auditing & Accountability Journal, 4(3). DOI: https://doi.org/10.1108/09513579110144802
IMHOFF M.L., BOUNOUA L., RICKETTS T., LOUCKS C., HARRISS R., LAWRENCE W.T., 2004, Global patterns in human consumption of net primary production, in: Nature, 429, p. 870-873. DOI: https://doi.org/10.1038/nature02619
IPCC, 2018, Global Warming of 1.5oC. Special Report, https://www.ipcc.ch/sr15/ (12.04.2020).
IPCC, 2000, Land Use, Land-Use Change, and Forestry, eds. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verado D.V., Dokken D.J., Cambridge University Press, UK, https://ww www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (10.04.2020).
IPCC, 2013, Climat change 2013: The Physical Science Basis, http://www.climatechange2013.org/report/ (12.04.2020).
JENKINSON D. S., 1990, The turnover of organic carbon and nitrogen in soil, in: Phil. Trans. R. Soc. B, 329, p. 361-368. DOI: https://doi.org/10.1098/rstb.1990.0177
JOBBAGY E.G., JACKSON R.B., 2000, The vertical distribution of soil organic carbon and its relation to climate and vegetation, in: Ecol. Appl., 10(2), p. 423-436. DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
KAY B.D., VANDENBYGAART A.J., 2002, Conservation tillage and depth stratification of porosity and soil organic matter, in: Soil Till. Res., 66(2), p. 107-118. DOI: https://doi.org/10.1016/S0167-1987(02)00019-3
KIRCHMANN H., HABERHAUER G., KANDELER E., SESSITSCH A., GERZABEK M.H., 2004, Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment, in: Global Biogeochem. Cyc., 18, p. 247-259. DOI: https://doi.org/10.1029/2003GB002204
KONG A.Y.Y., SIX J., BRYANT D.C., DENISON
R.F., VAN KESSEL C., 2005, The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems, in: Soil Sci. Soc. Am. J., 69, p. 1078-1085. DOI: https://doi.org/10.2136/sssaj2004.0215
KORSCHENS M., MULLER A., 1996, The static experiment Bad Lauchst dt. Germany, in: Evaluation of soil organic matter: models using existing datasets, eds. Powlson D.S., Smith P., Smith J.U., Nato ASI Subseries I, 38, p. 369-387.
KOVEN C.D., HUGELIUS G., LAWRENCE D.M, WIEDER W.R., 2017, Higher climatological temperature sensitivity of soil carbon in cold than warm climates, in: Nat. Clim. Chang., 7, p. 817-822 DOI: https://doi.org/10.1038/nclimate3421
KUNDU S., BAHATTACHARYYA S.K.R., PRAKASH V., GHOSH B.N., GUPTA H.S., 2007, Carbon sequestration and relationship between carbon addition and storage under rainfed soyabean-wheat rotation in sandy loam soil of the Indian Himalayes, in: Soil Till. Res., 92(1-2), p. 87-95. DOI: https://doi.org/10.1016/j.still.2006.01.009
LAL R., 2004, Soil carbon sequestration to mitigate climate change, in: Geoderma, 123(1-2), p. 1-22. DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
LAL R., 2005, Soil carbon sequestration in natural and managed tropical forest ecosystems, in: J Sustain For., 21, p. 1-30. DOI: https://doi.org/10.1300/J091v21n01_01
LAL R., 2008, Carbon sequestration, in: Phil Trans R Soc B, 363(1492), p. 815-830. DOI: https://doi.org/10.1098/rstb.2007.2185
LAL R., 2015, Sequestering carbon and increasing productivity by conservation agriculture, in: Journal of Soil Water Conservation, 70(3), p. 55-62. DOI: https://doi.org/10.2489/jswc.70.3.55A
LAMB D., ERSKINE P., PARROTTA J., 2005, Restoration of degraded tropical forest landscapes, in: Science, 310, p. 1628-1632. DOI: https://doi.org/10.1126/science.1111773
LEMKE R.L., VANDENBYGAART A.J., CAMPBELL C.A., LAFOND G.P., GRANT B., 2010, Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll, in: Agriculture, Ecosystems & Environment, 135, p. 42-51. DOI: https://doi.org/10.1016/j.agee.2009.08.010
LIEBIG M.A., MORGAN J.A., REEDER J.D., ELLERT B.H., GOLLANY H.T., SCHUMAN G.E., 2005, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada., Soil Tillage Res., 83, p. 25-52. DOI: https://doi.org/10.1016/j.still.2005.02.008
LUGATO E., LEIP A., JONES A., 2018, Mitigation potential of soil carbon management overestimated by neglecting N2O emissions, in: Nature Climate Change, 8, p. 219-223. DOI: https://doi.org/10.1038/s41558-018-0087-z
MANN L.K., 1986, Changes in soil carbon storage after cultivation, in: Soil. Sci., 142, p. 279-288. DOI: https://doi.org/10.1097/00010694-198611000-00006
MAZZONCINI M., SAPKOTA T.B., BÀRBERI P., ANTICHI D., RISALITI R., 2011, Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content, in: Soil Tillage Res., 114, p. 165-174. DOI: https://doi.org/10.1016/j.still.2011.05.001
MERANTE P., DIBARI C., FERRISE R., BINDI M., LESSCHEN P.J., KUIKMAN P., SANCHEZ B., IGLESIAS A.. 2014, Report on critical low soil organic matter contents, which jeopardise good functioning of farming systems. Smart Soil Project. Sustainable farm Management Aimed at Reducing Threats to Soils under climate change, http://smartsoil.eu/fileadmin/www.smartsoil.eu/Deliverables/D2_4_SmartSoil_Final.pdf (22.04.2020).
METTING F.B., SMITH J.L., AMTHOR J.S., IZAURRALDE R.C., 2001, Science needs and new technology for increasing soil carbon sequestration, in: Climatic Change, 51, p. 11-34. DOI: https://doi.org/10.1023/A:1017509224801
MRABET R., SABER N., EL-BRAHLI A., LAHLOU S., BESSAM F., 2001, Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco, in: Soil Till. Res., 57, p. 225-235. DOI: https://doi.org/10.1016/S0167-1987(00)00180-X
NEILL C., 2011, Impact of crop residue management on soil organic matter stocks. A modelling study, in: Ecological Modelling 222(15), p. 2751-2760. DOI: https://doi.org/10.1016/j.ecolmodel.2011.04.029
OLEJNIK T., SOBIECKA E., 2017, Utilitarian technological solutions to reduce CO2 emission in the aspect of sustainable development, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 12(2), p. 173-179.
OLSON K.R., 2013, Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development, in: Geoderma, 195-196, p. 201-206. DOI: https://doi.org/10.1016/j.geoderma.2012.12.004
PAUSTIAN K., COLE C.V., SAUERBECK D., SAMPSON N., 1998, CO2 mitigation by agriculture: An overview, in: Climatic Change, 40(1), p. 135-162. DOI: https://doi.org/10.1023/A:1005347017157
PAUSTIAN K., COLLINS H.P., PAUL E.A., 1997, Management controls on soil carbon, in: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, eds. Paul E.A., Paustian K., Elliott E.T., and Cole C.V., CRC Press, Boca Raton, Florida, USA, p. 15-49. DOI: https://doi.org/10.1201/9780367811693-2
POEPLAU C., DON A., 2015, Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, in: Agriculture Ecosystems & Environment, 200, p. 33-41. DOI: https://doi.org/10.1016/j.agee.2014.10.024
POEPLAU C., DON A., VESTERDAL L., LEIFELD J., VAN WESEMAEL B., SCHUMACHER J., GENSIOR A., 2011, Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach, in: Global Change Biology, 17, p. 2415-2427. DOI: https://doi.org/10.1111/j.1365-2486.2011.02408.x
POST W.M., KWON K.C., 2000, Soil carbon sequestration and land-use change: Processes and potential, in: Global Change Biology, 6, p. 317-327. DOI: https://doi.org/10.1046/j.1365-2486.2000.00308.x
RANAIVOSON L., NAUDIN K., RIPOCHE A., AFFHOLDER F., RABEHARISOA L., CORBEELS M., 2017, Agro-ecological functions of crop residues under conservation agriculture. A review, in: Agronomy for Sustainable Development, 37, p. 26. DOI: https://doi.org/10.1007/s13593-017-0432-z
SCHULTEN H.R., LEINWEBER P., 1991, Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions, in: Biology and Fertility of Soils, 12, p. 81-88. DOI: https://doi.org/10.1007/BF00341480
SIMON T., 2008, The influence of long-term organic and mineral fertilization on soil organic matter, in: Soil and Water Res., 3(2), p. 41-51. DOI: https://doi.org/10.17221/21/2008-SWR
SIX J., ELLIOTT E.T., PAUSTIAN K., 2000, Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under notillage agriculture, in: Soil Biol. Biochem., 32(14), p. 2099-2103. DOI: https://doi.org/10.1016/S0038-0717(00)00179-6
STOCKMANN U., ADAMS M., CRAWFORD J.W., FIELD D.J., HENAKAARCHCHIA N., JENKINS M. et al., 2013, The knowns, known unknowns and unknowns of sequestration of soil organic carbon, in: Agriculture, Ecosystems and Environment, 164, p. 80-90. DOI: https://doi.org/10.1016/j.agee.2012.10.001
STRASSMANN K.M.F., FISCHER J.G., 2008, Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity, in: Tellus B 60(4), p. 583-603. DOI: https://doi.org/10.1111/j.1600-0889.2008.00340.x
TORN M.S., TRUMBORE S.E., CHADWICK O.A., VITOUSEK P.M., HENDRICKS D.M., 1997, Mineral control of soil organic carbon storage and turnover, in: Nature, 389, p. 170-173. DOI: https://doi.org/10.1038/38260
TRIMBLE S.W., CROSSON P., 2000, U.S. soil erosion rates – myth and reality, in: Science, 289(5479), p. 248-250. DOI: https://doi.org/10.1126/science.289.5477.248
WARDLE D.A., ZACKRISSON O., HORNBERG G., GALLET C., 1997, The influence of island area on ecosystem properties, in: Science, 277, p. 1296-1299. DOI: https://doi.org/10.1126/science.277.5330.1296
WATANABE A., KAWASAKI S., KITAMURA S., YOSHIDA S., 2007, Temporal changes in humic acids in cultivated soils with continuous manure application, in: Soil Sci. Plant Nutr., 53(3), p. 535-544. DOI: https://doi.org/10.1111/j.1747-0765.2007.00170.x
WEISMEIER M., URBANSKI L., HOBLEY E., LANG B., MARIN-SPIOTTA E., et al., 2019, Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales, in: Geoderma, 333, p. 149-162. DOI: https://doi.org/10.1016/j.geoderma.2018.07.026
WEST T.O., POST W.M., 2002, Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, in: Soil Sci. Soc. Am. J., 66(6), p. 1930-1946. DOI: https://doi.org/10.2136/sssaj2002.1930
WITTER E, MORTENSSON A.M., GARCIA F.V., 1993, Size of the microbial mass in a long-term field experiment as affected by different N fertilizers, in: Soil Biol. Biochem., 28, p. 659-669. DOI: https://doi.org/10.1016/0038-0717(93)90105-K
Downloads
Article Details
Abstract views: 65
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.