Sekwestracja węgla w glebie jako zrównoważona metoda ograniczania efektu cieplarnianego
Grażyna Żukowska
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Polska)
https://orcid.org/0000-0002-8189-6675
Magdalena Myszura
magdalena.myszura@up.lublin.plUniversity of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Polska)
https://orcid.org/0000-0002-5378-924X
Magdalena Zdeb
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Polska)
https://orcid.org/0000-0002-9337-0830
Małgorzata Pawłowska
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin (Polska)
https://orcid.org/0000-0002-5976-7420
Abstrakt
Dzięki istnieniu naturalnych mechanizmów transformacji związków węgla zawartych w atmosferze w związki próchniczne, gleba stanowi istotny czynnik kontrolujący stężenie atmosferycznego CO2. Masa węgla zawartego w materii organicznej nagromadzonej w powierzchniowej warstwie skorupy ziemskiej jest większa niż masa tego pierwiastka w atmosferze lub biomasie organizmów żywych. W ostatnich latach wiele uwagi poświęca się roli gleb w ograniczeniu przyczyn zmian klimatycznych, poddając pod rozwagę możliwości zwiększenia w nich sekwestracji węgla. Taki sposób podejścia do problemu efektu cieplarnianego, nie wymagający wprowadzania złożonych i drogich rozwiązań technologicznych nakierowanych na wychwytywanie i magazynowanie atmosferycznego CO2, a dodatkowo przyczyniający się do poprawy jakości środowiska gruntowo-wodnego oraz produktywności gleb jest w pełni zrównoważony, gdyż łączy ze sobą zarówno kwestie środowiskowe, gospodarcze i społeczne.
Słowa kluczowe:
zmiany klimatyczne, funkcje gleby, obieg węglaBibliografia
BALESTRINI R., LUMINI E., BORRIELLO R., BIANCIOTTO V., 2015, Plant-Soil Biota Interactions, in: Soil Microbiology, Ecology and Biochemistry (Fourth Edition), Academic Press, p. 311-338.
DOI: https://doi.org/10.1016/B978-0-12-415955-6.00011-6
Google Scholar
BANWART S.A., BERNASCONI S.M., BLUM W.E.H., DE SOUZA D.M., CHABAUX F., DUFFY C., et al., 2017, Quantifying and managing soil functions in Earth’s critical zone – combining experimentation and mathematical modelling. Soil functions in Earth’s critical zone: key results and conclusions, in: Adv. Agron., 142, p. 1-27.
DOI: https://doi.org/10.1016/bs.agron.2016.11.001
Google Scholar
BATJES N.H., 2013, Reader for the soil carbon benefits module, in: Proceedings of the ISRIC Spring School, April 22-26, 2013, Wageningen University Campus, The Netherlands, p. 1-16.
Google Scholar
BRYANT L., STOCKWEL, R., WHITE T., 2013, Counting Cover Crops, National Wildlife Federation, Washington DC, https://grasslandoregon.com/assets/counting-cover-crops.pdf (22.05.2020).
Google Scholar
BURRAS C.L., KIMBLE J.M., LAL R., MAUSBACH M.J., UEHARA G., CHENG H.H., KISSEL D.E., LUXMOORE R.J., RICE C.W., WILDING LP., 2001, Carbon Sequestration: Position
Google Scholar
of the Soil Science Society of America, in: Agronomy Publications, 59, p. 1-4.
Google Scholar
CEL W., CZECHOWSKA-KOSACKA A., ZHANG T., 2016, Sustainable mitigation of greenhouse gases emission, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 11(1), p. 173-176.
Google Scholar
CHABBI A., RUMPEL C., KOGEL-KNABNER I., 2009, Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, in: Soil Biol. Biochem., 41, p. 256-261.
DOI: https://doi.org/10.1016/j.soilbio.2008.10.033
Google Scholar
CHRISTENSEN B.T., 1988, Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions, in: Biol. Fertil.Soils, 5, p. 304-307.
DOI: https://doi.org/10.1007/BF00262136
Google Scholar
COLLINS H.P., ELLIOTT E.T., PAUSTIAN K., BUNDY L.G., DICK W.A., HUGGINS D.R., SMUCKER A.J.M., 2000, Soil carbon pools and fluxes in long-term corn belt agroecosystems, in: Soil Biol. Biochem., 32, p. 157-68.
DOI: https://doi.org/10.1016/S0038-0717(99)00136-4
Google Scholar
CONANT R.T., RYAN M.G., ÅGREN G.I., BIRGE H.E., DAVIDSON E.A., ELIASSON P.E., et al., 2011, Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward, in: Glob. Chang. Biol., 17 (11), p. 3392-3404.
DOI: https://doi.org/10.1111/j.1365-2486.2011.02496.x
Google Scholar
CONANT R.T., PAUSTIAN K., ELLIOTT E.T., 2001, Grassland management and conversion into grassland: effects on soil carbon, in: Ecological Applications, 11, p. 343-355.
DOI: https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
Google Scholar
CREWS T.E., RUMSEY B.E., 2017, What agriculture can learn from native ecosystems in building soil organic matter: A review, in: Sustainability, 9(4), p. 578.
DOI: https://doi.org/10.3390/su9040578
Google Scholar
CVETKOV M., ŠANTAVEC I., KOCJAN AČKO D., TAJNŠEK A., 2010, Soil organic matter content according to different management system within long-term experiment, in: Acta Agric. Slovenica, 95, p. 79-88.
DOI: https://doi.org/10.14720/aas.2010.95.1.14804
Google Scholar
DAVIDSON E.A., JANSSENS I.A., 2006, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, in: Nature, 440(7081), p. 165-173.
DOI: https://doi.org/10.1038/nature04514
Google Scholar
DIACONO M., MONTEMURRO F., 2010, Long term effect of organic amendments on soil fertility. A Review, in: Gron. Sustain. Dev., 30, p. 411-422.
DOI: https://doi.org/10.1051/agro/2009040
Google Scholar
DIXON R.K., BROWN S., HONGHTON R.A., SOLOMON A.M., TREXLER M.C., WIŚNIEWSKI J., 1994, Carbon pools and flux of global forest ecosystems, in: Science, 263, p. 185-190.
DOI: https://doi.org/10.1126/science.263.5144.185
Google Scholar
DOBRZAŃSKI H., ZAWADZKI S. (eds.), 1995, Gleboznawstwo, 1995, PWRiL, Warszawa
Google Scholar
DOETTERL S., SIX J., VAN OOST K., CASANOVA-KATNY A., BOUDIN M., BOECKX P., STEVENTS A., MERCKX R., CASANOVA M.A., MUÑOZ C., ZAGAL E., 2015, Soil carbon storage
Google Scholar
controlled by interactions between geochemistry and climate, in: Nat. Geosci., 8(10), p. 780-783.
DOI: https://doi.org/10.1038/ngeo2516
Google Scholar
DORADO J., ZANCADA M.C., ALMENDROS G., LO´PEZ-FANDO C., 2003, Changes in soil properties and humic substances after long term amendments with manure and crop residues in dryland farming systems, in: Journal of Plant Nutrition and Soil Science, 166, p. 31-38.
DOI: https://doi.org/10.1002/jpln.200390009
Google Scholar
ECCP, 2003, European Climate Change Programme, Final Report of Working Group: Sinks Related to Agricultural Soils https://ec.europa.eu/clima/sites/clima/files/eccp/second/docs/finalreport_agricsoils_en.pdf (23.05.2020).
Google Scholar
EEA 2017, Soil, land and climate change, https://www.eea.europa.eu/signals/signals-2019-content-list/articles/soil-land-and-climate-change (5.06.2020).
Google Scholar
GOH K.M., 2004, Carbon sequestration and stabilization in soils. Implications for soil productivity and climate change, in: Soil Science and Plant Nutrition, 50(4), p. 467-476.
DOI: https://doi.org/10.1080/00380768.2004.10408502
Google Scholar
GONG W., YAN X.Y., WANG J.Y., HU T.X., GONG Y.B., 2009, Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain, in: Plant and Soil, 314, p. 67-76 https://doi.org/10.1016/s0038-0717(03)00186-x
DOI: https://doi.org/10.1007/s11104-008-9705-2
Google Scholar
GREGORICH E.G., CARTER M.R., DORAN J.W., PANKHURST C.E., DWYER L.M., 1997, Biological attributes of soil quality, in: Dev. Soil Sci., 25, p. 81-113.
DOI: https://doi.org/10.1016/S0166-2481(97)80031-1
Google Scholar
HANSEN J., KHARECHA P., SATO M., MASSONDELMOTTE V., ACKERMAN F., BEERLING D.J, et al., 2013, Assessing ‘Dangerous Climate Change’: Required reduction of carbon emissions to protect young people, future generations and nature, ed. Añel J.A., in: PLOS One, 8(12), p. 1-26.
DOI: https://doi.org/10.1371/journal.pone.0081648
Google Scholar
HINES R., 1991, On Valuing Nature. Accounting, in: Auditing & Accountability Journal, 4(3).
DOI: https://doi.org/10.1108/09513579110144802
Google Scholar
IMHOFF M.L., BOUNOUA L., RICKETTS T., LOUCKS C., HARRISS R., LAWRENCE W.T., 2004, Global patterns in human consumption of net primary production, in: Nature, 429, p. 870-873.
DOI: https://doi.org/10.1038/nature02619
Google Scholar
IPCC, 2018, Global Warming of 1.5oC. Special Report, https://www.ipcc.ch/sr15/ (12.04.2020).
Google Scholar
IPCC, 2000, Land Use, Land-Use Change, and Forestry, eds. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verado D.V., Dokken D.J., Cambridge University Press, UK, https://ww www.ipcc.ch/report/land-use-land-use-change-and-forestry/ (10.04.2020).
Google Scholar
IPCC, 2013, Climat change 2013: The Physical Science Basis, http://www.climatechange2013.org/report/ (12.04.2020).
Google Scholar
JENKINSON D. S., 1990, The turnover of organic carbon and nitrogen in soil, in: Phil. Trans. R. Soc. B, 329, p. 361-368.
DOI: https://doi.org/10.1098/rstb.1990.0177
Google Scholar
JOBBAGY E.G., JACKSON R.B., 2000, The vertical distribution of soil organic carbon and its relation to climate and vegetation, in: Ecol. Appl., 10(2), p. 423-436.
DOI: https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
Google Scholar
KAY B.D., VANDENBYGAART A.J., 2002, Conservation tillage and depth stratification of porosity and soil organic matter, in: Soil Till. Res., 66(2), p. 107-118.
DOI: https://doi.org/10.1016/S0167-1987(02)00019-3
Google Scholar
KIRCHMANN H., HABERHAUER G., KANDELER E., SESSITSCH A., GERZABEK M.H., 2004, Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment, in: Global Biogeochem. Cyc., 18, p. 247-259.
DOI: https://doi.org/10.1029/2003GB002204
Google Scholar
KONG A.Y.Y., SIX J., BRYANT D.C., DENISON
Google Scholar
R.F., VAN KESSEL C., 2005, The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems, in: Soil Sci. Soc. Am. J., 69, p. 1078-1085.
DOI: https://doi.org/10.2136/sssaj2004.0215
Google Scholar
KORSCHENS M., MULLER A., 1996, The static experiment Bad Lauchst dt. Germany, in: Evaluation of soil organic matter: models using existing datasets, eds. Powlson D.S., Smith P., Smith J.U., Nato ASI Subseries I, 38, p. 369-387.
Google Scholar
KOVEN C.D., HUGELIUS G., LAWRENCE D.M, WIEDER W.R., 2017, Higher climatological temperature sensitivity of soil carbon in cold than warm climates, in: Nat. Clim. Chang., 7, p. 817-822
DOI: https://doi.org/10.1038/nclimate3421
Google Scholar
KUNDU S., BAHATTACHARYYA S.K.R., PRAKASH V., GHOSH B.N., GUPTA H.S., 2007, Carbon sequestration and relationship between carbon addition and storage under rainfed soyabean-wheat rotation in sandy loam soil of the Indian Himalayes, in: Soil Till. Res., 92(1-2), p. 87-95.
DOI: https://doi.org/10.1016/j.still.2006.01.009
Google Scholar
LAL R., 2004, Soil carbon sequestration to mitigate climate change, in: Geoderma, 123(1-2), p. 1-22.
DOI: https://doi.org/10.1016/j.geoderma.2004.01.032
Google Scholar
LAL R., 2005, Soil carbon sequestration in natural and managed tropical forest ecosystems, in: J Sustain For., 21, p. 1-30.
DOI: https://doi.org/10.1300/J091v21n01_01
Google Scholar
LAL R., 2008, Carbon sequestration, in: Phil Trans R Soc B, 363(1492), p. 815-830.
DOI: https://doi.org/10.1098/rstb.2007.2185
Google Scholar
LAL R., 2015, Sequestering carbon and increasing productivity by conservation agriculture, in: Journal of Soil Water Conservation, 70(3), p. 55-62.
DOI: https://doi.org/10.2489/jswc.70.3.55A
Google Scholar
LAMB D., ERSKINE P., PARROTTA J., 2005, Restoration of degraded tropical forest landscapes, in: Science, 310, p. 1628-1632.
DOI: https://doi.org/10.1126/science.1111773
Google Scholar
LEMKE R.L., VANDENBYGAART A.J., CAMPBELL C.A., LAFOND G.P., GRANT B., 2010, Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll, in: Agriculture, Ecosystems & Environment, 135, p. 42-51.
DOI: https://doi.org/10.1016/j.agee.2009.08.010
Google Scholar
LIEBIG M.A., MORGAN J.A., REEDER J.D., ELLERT B.H., GOLLANY H.T., SCHUMAN G.E., 2005, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada., Soil Tillage Res., 83, p. 25-52.
DOI: https://doi.org/10.1016/j.still.2005.02.008
Google Scholar
LUGATO E., LEIP A., JONES A., 2018, Mitigation potential of soil carbon management overestimated by neglecting N2O emissions, in: Nature Climate Change, 8, p. 219-223.
DOI: https://doi.org/10.1038/s41558-018-0087-z
Google Scholar
MANN L.K., 1986, Changes in soil carbon storage after cultivation, in: Soil. Sci., 142, p. 279-288.
DOI: https://doi.org/10.1097/00010694-198611000-00006
Google Scholar
MAZZONCINI M., SAPKOTA T.B., BÀRBERI P., ANTICHI D., RISALITI R., 2011, Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content, in: Soil Tillage Res., 114, p. 165-174.
DOI: https://doi.org/10.1016/j.still.2011.05.001
Google Scholar
MERANTE P., DIBARI C., FERRISE R., BINDI M., LESSCHEN P.J., KUIKMAN P., SANCHEZ B., IGLESIAS A.. 2014, Report on critical low soil organic matter contents, which jeopardise good functioning of farming systems. Smart Soil Project. Sustainable farm Management Aimed at Reducing Threats to Soils under climate change, http://smartsoil.eu/fileadmin/www.smartsoil.eu/Deliverables/D2_4_SmartSoil_Final.pdf (22.04.2020).
Google Scholar
METTING F.B., SMITH J.L., AMTHOR J.S., IZAURRALDE R.C., 2001, Science needs and new technology for increasing soil carbon sequestration, in: Climatic Change, 51, p. 11-34.
DOI: https://doi.org/10.1023/A:1017509224801
Google Scholar
MRABET R., SABER N., EL-BRAHLI A., LAHLOU S., BESSAM F., 2001, Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco, in: Soil Till. Res., 57, p. 225-235.
DOI: https://doi.org/10.1016/S0167-1987(00)00180-X
Google Scholar
NEILL C., 2011, Impact of crop residue management on soil organic matter stocks. A modelling study, in: Ecological Modelling 222(15), p. 2751-2760.
DOI: https://doi.org/10.1016/j.ecolmodel.2011.04.029
Google Scholar
OLEJNIK T., SOBIECKA E., 2017, Utilitarian technological solutions to reduce CO2 emission in the aspect of sustainable development, in: Problemy Ekorozwoju/ Problems of Sustainable Development, 12(2), p. 173-179.
Google Scholar
OLSON K.R., 2013, Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development, in: Geoderma, 195-196, p. 201-206.
DOI: https://doi.org/10.1016/j.geoderma.2012.12.004
Google Scholar
PAUSTIAN K., COLE C.V., SAUERBECK D., SAMPSON N., 1998, CO2 mitigation by agriculture: An overview, in: Climatic Change, 40(1), p. 135-162.
DOI: https://doi.org/10.1023/A:1005347017157
Google Scholar
PAUSTIAN K., COLLINS H.P., PAUL E.A., 1997, Management controls on soil carbon, in: Soil Organic Matter in Temperate Agroecosystems: Long-Term Experiments in North America, eds. Paul E.A., Paustian K., Elliott E.T., and Cole C.V., CRC Press, Boca Raton, Florida, USA, p. 15-49.
DOI: https://doi.org/10.1201/9780367811693-2
Google Scholar
POEPLAU C., DON A., 2015, Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, in: Agriculture Ecosystems & Environment, 200, p. 33-41.
DOI: https://doi.org/10.1016/j.agee.2014.10.024
Google Scholar
POEPLAU C., DON A., VESTERDAL L., LEIFELD J., VAN WESEMAEL B., SCHUMACHER J., GENSIOR A., 2011, Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach, in: Global Change Biology, 17, p. 2415-2427.
DOI: https://doi.org/10.1111/j.1365-2486.2011.02408.x
Google Scholar
POST W.M., KWON K.C., 2000, Soil carbon sequestration and land-use change: Processes and potential, in: Global Change Biology, 6, p. 317-327.
DOI: https://doi.org/10.1046/j.1365-2486.2000.00308.x
Google Scholar
RANAIVOSON L., NAUDIN K., RIPOCHE A., AFFHOLDER F., RABEHARISOA L., CORBEELS M., 2017, Agro-ecological functions of crop residues under conservation agriculture. A review, in: Agronomy for Sustainable Development, 37, p. 26.
DOI: https://doi.org/10.1007/s13593-017-0432-z
Google Scholar
SCHULTEN H.R., LEINWEBER P., 1991, Influence of long-term fertilization with farmyard manure on soil organic matter: Characteristics of particle-size fractions, in: Biology and Fertility of Soils, 12, p. 81-88.
DOI: https://doi.org/10.1007/BF00341480
Google Scholar
SIMON T., 2008, The influence of long-term organic and mineral fertilization on soil organic matter, in: Soil and Water Res., 3(2), p. 41-51.
DOI: https://doi.org/10.17221/21/2008-SWR
Google Scholar
SIX J., ELLIOTT E.T., PAUSTIAN K., 2000, Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under notillage agriculture, in: Soil Biol. Biochem., 32(14), p. 2099-2103.
DOI: https://doi.org/10.1016/S0038-0717(00)00179-6
Google Scholar
STOCKMANN U., ADAMS M., CRAWFORD J.W., FIELD D.J., HENAKAARCHCHIA N., JENKINS M. et al., 2013, The knowns, known unknowns and unknowns of sequestration of soil organic carbon, in: Agriculture, Ecosystems and Environment, 164, p. 80-90.
DOI: https://doi.org/10.1016/j.agee.2012.10.001
Google Scholar
STRASSMANN K.M.F., FISCHER J.G., 2008, Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity, in: Tellus B 60(4), p. 583-603.
DOI: https://doi.org/10.1111/j.1600-0889.2008.00340.x
Google Scholar
TORN M.S., TRUMBORE S.E., CHADWICK O.A., VITOUSEK P.M., HENDRICKS D.M., 1997, Mineral control of soil organic carbon storage and turnover, in: Nature, 389, p. 170-173.
DOI: https://doi.org/10.1038/38260
Google Scholar
TRIMBLE S.W., CROSSON P., 2000, U.S. soil erosion rates – myth and reality, in: Science, 289(5479), p. 248-250.
DOI: https://doi.org/10.1126/science.289.5477.248
Google Scholar
WARDLE D.A., ZACKRISSON O., HORNBERG G., GALLET C., 1997, The influence of island area on ecosystem properties, in: Science, 277, p. 1296-1299.
DOI: https://doi.org/10.1126/science.277.5330.1296
Google Scholar
WATANABE A., KAWASAKI S., KITAMURA S., YOSHIDA S., 2007, Temporal changes in humic acids in cultivated soils with continuous manure application, in: Soil Sci. Plant Nutr., 53(3), p. 535-544.
DOI: https://doi.org/10.1111/j.1747-0765.2007.00170.x
Google Scholar
WEISMEIER M., URBANSKI L., HOBLEY E., LANG B., MARIN-SPIOTTA E., et al., 2019, Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales, in: Geoderma, 333, p. 149-162.
DOI: https://doi.org/10.1016/j.geoderma.2018.07.026
Google Scholar
WEST T.O., POST W.M., 2002, Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis, in: Soil Sci. Soc. Am. J., 66(6), p. 1930-1946.
DOI: https://doi.org/10.2136/sssaj2002.1930
Google Scholar
WITTER E, MORTENSSON A.M., GARCIA F.V., 1993, Size of the microbial mass in a long-term field experiment as affected by different N fertilizers, in: Soil Biol. Biochem., 28, p. 659-669.
DOI: https://doi.org/10.1016/0038-0717(93)90105-K
Google Scholar
Autorzy
Grażyna ŻukowskaUniversity of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Polska
https://orcid.org/0000-0002-8189-6675
Autorzy
Magdalena Myszuramagdalena.myszura@up.lublin.pl
University of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Polska
https://orcid.org/0000-0002-5378-924X
Autorzy
Magdalena ZdebUniversity of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Polska
https://orcid.org/0000-0002-9337-0830
Autorzy
Małgorzata PawłowskaUniversity of Life Science in Lublin, Faculty of Agrobioengineering, Institute of Soil Science and Environment Management, Leszczyńskiego 7, 20-069 Lublin Polska
https://orcid.org/0000-0002-5976-7420
Statystyki
Abstract views: 38PDF downloads: 11
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.