Możliwość wykorzystania rzepaku ozimego (Brassica napus L. var. Napus) do celów energetycznych
Jakub Siemek
siemek@agh.edu.plAGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow (Polska)
Jan Macuda
AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow (Polska)
Łukasz Łukańko
AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow (Polska)
Jakub Nowak
AGH University of Science and Technology, Faculty of Physics and Applied Computer, al. Mickiewicza 30, 30-059 Krakow (Polska)
Tadeusz Zając
University of Agriculture, Unit of Crop Production, Institute of Plant Production, al. Mickiewicza 21, 31-120 Krakow (Polska)
Abstrakt
Biomasa jest istotnym elementem w bilansie energetycznym na świecie i odgrywa dużą rolę w działaniach na rzecz redukcji emisji gazów cieplarnianych, stanowiąc zrównoważone źródło energii. Jednym ze sposobów użycia biomasy jest jej współspalanie z węglem kamiennym i brunatnym w celu wytwarzania energii elektrycznej. Ważnym czynnikiem promującym wykorzystanie biomasy w państwach Unii Europejskiej jest fakt, że emisja CO2 z jej spalania nie wlicza się do sumy emisji ze spalania paliw, zgodnie z zasadami ustalonymi w systemie handlu uprawnieniami EU ETS.
Celem badań było zbadanie możliwości wykorzystania rzepaku ozimego do celów energetycznych, wychodowanego w trzech lokalizacjach Polski południowej. Do badań wykorzystane zostały dwa gatunki rzepaku ozimego Adam i Poznanianki, analizy wykonano dla łuszczyny, nasion, łodygi głównej i bocznej. W ramach przeprowadzonych badań określona została wartość opałowa oraz ciepło spalanie dla 20 próbek rzepaku ozimego. Najwyższe wartości zostały uzyskane dla ziaren rzepaku, natomiast najniższe dla łodyg. Obliczone wartości emisji dwutlenku węgla dla badanych próbek w większości przypadków wynosiły powyżej 100 mg/kJ i były dużo większe niż emisja podczas spalania węgla kamiennego i brunatnego. Dodatkowo w ramach badania oznaczono wilgotność biomasy, ilość powstałego w procesie spalania popiołu oraz oceniono zawartość części lotnych oraz węgla i siarki. Ponadto w ramach badania wykonano pomiary wilgotność biomasy, ilość wytworzonego popiołu w procesie spalania oraz określono zawartość związków lotnych oraz węgla i siarki.
Słowa kluczowe:
biomasa, rzepak ozimy, wartość opałowa, emisja ditlenku węglaBibliografia
AGBOR E., ZHANG X., KUMAR A., 2014, A review of biomass co-firing in North America, in: Renewable & Sustainable Energy Reviews, 40, p. 930-943.
DOI: https://doi.org/10.1016/j.rser.2014.07.195
Google Scholar
AL-MANSOUR F., ZUWALA J., 2010, An evaluation of biomass co-firing in Europe, in: Biomass & Bioenergy, 34, p. 620-629.
DOI: https://doi.org/10.1016/j.biombioe.2010.01.004
Google Scholar
BAJWA D.S., PETERSON T., SHARM N., SHOJAEIARANI J., BAJWA S.G., 2018, A review of densified solid biomass for energy production, in: Renewable & Sustainable Energy Reviews, 96, p. 295-305.
DOI: https://doi.org/10.1016/j.rser.2018.07.040
Google Scholar
CAO Y., PAWŁOWSKI A., 2013, Biomass as an answer to sustainable energy. Opportunity versus challenge, in: Environment Protection Engineering, 39(1), p. 153-161.
DOI: https://doi.org/10.37190/epe130112
Google Scholar
CENTRAL STATISTICAL OFFICE (GUS), 2017, Poland Environment, Warsaw.
Google Scholar
CHEN C., QIN S., CHEN F., LU Z., CHENG Z., 2019, Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis, in: Journal of the Energy Institute, 92(2), p. 364-369.
DOI: https://doi.org/10.1016/j.joei.2017.12.008
Google Scholar
DEMIRBAS A., 2007, Effects of moisture and hydrogen content on the heating value of fuels, in: Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29, p. 649-655.
DOI: https://doi.org/10.1080/009083190957801
Google Scholar
DZIKUC M., PIWOWAR A., 2016, Ecological and economic aspects of electric energy production using the biomass co-firing method: the case of Poland, in: Renewable & Sustainable Energy Reviews, 55, p. 856-862.
DOI: https://doi.org/10.1016/j.rser.2015.11.027
Google Scholar
EMERHI E.A., 2011, Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders, in: Advances in Applied Science Research, 2, p. 236-246.
Google Scholar
ENERGY REGULATORY OFFICE, 2018, Energy consumption in Poland 2005-2018, Warsaw.
Google Scholar
EA (ENVIRONEMNTAL AGENCY), 2016, Material comparators for end-of-waste decision,. Fuels: biomass, Report – SC130040/R7, Bristol.
Google Scholar
EROL M., HAYKIRI-ACMA H., KUCUKBAYRAK S., 2010, Calorific value estimation of biomass from their proximate analyses data, in: Renewable Energy, 35, p.170-173.
DOI: https://doi.org/10.1016/j.renene.2009.05.008
Google Scholar
EC (EUROPEAN COMMISSION), 2012, DIRECTORATE-GENERAL FOR RESEARCH AND INNOVATION, Innovating for sustainable growth: A bioeconomy for Europe, Brussels.
Google Scholar
EC (EUROPEAN COMMISSION), 2017, Biomass issues in the EU ETS, Guidance Document, Brussels.
Google Scholar
EEA (EUROPEAN ENVIRONMENTAL AGENCY), 2018, Air quality in Europe – 2018 report, Copenhagen.
Google Scholar
EU (EUROPEAN UNION), 2009, Directive 2009/28/EC of The European Parliament and of The Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, in: Off J. European Union, p. 16-62.
Google Scholar
EUROSTAT, AIR EMISSION, 2019a, Greenhouse gas emissions by source sector, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge&lang=en (16.07.2019).
Google Scholar
EUROSTAT, AIR EMISSION 2019b, Air pollutants by source sector, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (16.07.2019).
Google Scholar
EUROSTAT CROP PRODUCER, 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (30.05.2019).
Google Scholar
EUROSTAT ENERGY, 2019, Production ofelectricity and derived heat by type of fuel 2019, Crop production, http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (30.05.2019).
Google Scholar
EUROSTAT STATISTICS EXPLAINED, 2018, Main annual crop statistic, https://ec.europa.eu/eurostat/statistics-explained/index.php/Main_annual_crop_ statistics, (4.12.2018).
Google Scholar
GILLENWATER M., 2005, Calculation Tool for Direct Emissions from Stationary Combustion version 3.0, in: Environmental Resources Trust, Washington DC.
Google Scholar
GOTO K., YOGO K., HIGASHII T., 2013, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, in: Applied Energy, 111, p. 710-720.
DOI: https://doi.org/10.1016/j.apenergy.2013.05.020
Google Scholar
GUSTAVSSON L., JOELSSON A., SATHRE R., 2010, Life cycle primary energy use and carbon emission of an eight-storey, in: Energy and Buildings, 42, p. 230-242.
DOI: https://doi.org/10.1016/j.enbuild.2009.08.018
Google Scholar
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2006, IPCC Guidelines for National Greenhouse Gas Inventories, ed. Eggleston S. et al., Inst. Global Environ. Strategies, Hayama.
Google Scholar
IEA (INTERNATIOANAL ENERGY AGENCY), 2017, CO2 emissions from fuel combustion – highlights (2017th ed.), IEA/OECD, Paris.
Google Scholar
JANDACKA J., MALCHO M., OCHODEK T., KOLONICNY J., HOLUBCIK M., 2015, The increase of silver grass ash melting temperature using additives, in: International Journal of Renewable Energy Research, 5, p. 258-265.
Google Scholar
LESTANDER T.A., JOHNSSON B., GROTHAGE M., 2009, NIR techniques create added values for the pellet and biofuel industry, in: Bioresource Technology, 100(4), p. 1589-1594.
DOI: https://doi.org/10.1016/j.biortech.2008.08.001
Google Scholar
MAJ G., KRZACZEK P., KURANC A., PIEKARSKI W., 2017, Energy properties of sunflower seed husk as industrial extrusion residue, in: Research in Agricultural Engineering, 21, p. 77-84.
DOI: https://doi.org/10.1515/agriceng-2017-0008
Google Scholar
MCKENDRY P., 2002, Energy production from biomass (Part I): overview of biomass, in: Bioresource Technology, 83 p. 37-46.
DOI: https://doi.org/10.1016/S0960-8524(01)00118-3
Google Scholar
MITCHELL E.J.S., LEA-LANGTON A.R., JONES J.M., WILLIAMS A., LAYDEN P., JOHNSON R., 2016, The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove, in: Fuel Processing Technology, 142 p. 115-123.
DOI: https://doi.org/10.1016/j.fuproc.2015.09.031
Google Scholar
OZYUGURAN A., YAMAN S., 2017, Prediction of Calorific Value of Biomass from Proximate Analysis, in: Energy Procedia, 107, p. 130-136.
DOI: https://doi.org/10.1016/j.egypro.2016.12.149
Google Scholar
PAWŁOWSKI L. PAWŁOWSKI A., 2016, Wpływ sposobów pozyskiwania energii na realizację paradygmatów zrównoważonego rozwoju, in: Rocznik Ochrona Środowiska/Annual Set Environment Protection, 18(2), p. 19-37.
Google Scholar
POLISH INSTITUTE OF ENVIRONMENT PROTECTION, 2016, Calorific value an CO2 emission Factor, Emissions Trading System (EU ETS), Warsaw.
Google Scholar
TUMULURU J.S., WRIGHT C.T., KENNY K.L., HESS J.R., 2010, A review on biomass densification technologies for energy application, Idaho Natl. Lab., Idaho.
Google Scholar
VASSILEV S., VASSILEVA C., VASSILEV V., 2015, Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview, in: Fuel, 158, p. 330-350.
DOI: https://doi.org/10.1016/j.fuel.2015.05.050
Google Scholar
VICENTE E.D., ALVES C.A., 2018, An overview of particulate emissions from residential biomass combustion, in: Atmospheric Research, 199, p. 159-185.
DOI: https://doi.org/10.1016/j.atmosres.2017.08.027
Google Scholar
WIELGOSIŃSKI G., ŁECHTAŃSKA P., NAMIECIŃSKA O., 2017, Emission of some pollutants from biomass combustion in comparison to hard coal combustion, in: Journal of the Energy Institute, 90, p. 787-796.
DOI: https://doi.org/10.1016/j.joei.2016.06.005
Google Scholar
UN: UNITED NATIONS’ DIVISION FOR SUSTAINABLE DEVELOPMENT GOALS, 2012, Transforming our world: the 2030 Agenda for Sustainable Development, New York.
Google Scholar
ZAJĄC T., KLIMEK-KOPYRA A., OLEKSY A., LORENC-KOZIK A., RATAJCZAK K., 2016, Analysis of yield and planttraits of oilseed rape (Brassica napus L.) cultivated in temperate region in light possibilities of sowing in arid areas, in: Acta Agrobotanica, 69, p. 1696-1709.
DOI: https://doi.org/10.5586/aa.1696
Google Scholar
ZAJĄC T., SYNOWIEC A., OLEKSY A., MACUDA J., KLIMEK-KOPYRA A., BOROWIEC F., 2017, Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height, in: International Agrophysics, 31, p. 273-285.
DOI: https://doi.org/10.1515/intag-2016-0041
Google Scholar
ZHANG X., LUO L., SKITMORE M., 2015, Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects, in: Journal of Cleaner Production, 103, p. 873-883.
DOI: https://doi.org/10.1016/j.jclepro.2015.04.024
Google Scholar
Autorzy
Jakub Siemeksiemek@agh.edu.pl
AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow Polska
Autorzy
Jan MacudaAGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow Polska
Autorzy
Łukasz ŁukańkoAGH University of Science and Technology, Faculty of Drilling, Oil and Gas, al. Mickiewicza 30, 30-059 Krakow Polska
Autorzy
Jakub NowakAGH University of Science and Technology, Faculty of Physics and Applied Computer, al. Mickiewicza 30, 30-059 Krakow Polska
Autorzy
Tadeusz ZającUniversity of Agriculture, Unit of Crop Production, Institute of Plant Production, al. Mickiewicza 21, 31-120 Krakow Polska
Statystyki
Abstract views: 27PDF downloads: 15
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.