Integracja koncepcji niebiesko-zielonej infrastruktury jako narzędzie wspierania interdyscyplinarnego planowania Zrównoważonych Miast

Jan Kopp


Department of Geography, Faculty of Economics, University of West Bohemia, Univerzitní 22, 306 14 Plzeň (Czechy)
https://orcid.org/0000-0002-4768-613X

Jindřich Frajer


Department of Geography, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czechy)
https://orcid.org/0000-0003-0817-3128

Michal Lehnert


Department of Geography, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc (Czechy)
https://orcid.org/0000-0001-7691-1618

Michal Kohout


Department of Geography and Environmental Studies, California State University, San Bernardino, 5500 University Parkway, San Bernardino CA 92407, USA (Stany Zjednoczone)

Jiří Ježek


Department of Geography, Faculty of Economics, University of West Bohemia, Univerzitní 22, 306 14 Plzeň (Czechy)

Abstrakt

Obecnie istnieje tendencja do wykorzystywania naturalnego krajobrazu jako ważnego elementu w zdecentralizowanej gospodarce wodami opadowymi, będącej istotnej części zrównoważonego rozwoju obszarów miejskich. Termin niebiesko-zielona infrastruktura (BGI) jest używany w wielu rozwiązaniach planistycznych miast zrównoważonych. Korzystając z analizy tematycznej 27 badań i dokumentów z lat 2006-2019, zidentyfikowaliśmy 6 typów podejść do BGI. Następnie dokonaliśmy ich przeklasyfikowania na 3 podstawowe kategorie podejść koncepcyjnych. Wyróżniliśmy 4 podstawowe wytyczne dotyczące rozwoju nauki i praktyki, mające na celu promowanie zintegrowanej koncepcji BGI wspierającej interdyscyplinarne planowanie miast zrównoważonych. Opierając się na korzyściach płynących z BGI przedstawionych w omówionych opracowaniach i dokumentach, pokazujemy znaczenie BGI z perspektywy Agendy na rzecz zrównoważonego rozwoju 2030.


Słowa kluczowe:

infrastruktura niebiesko-zielona, BGI, zrównoważone miasta, urbanistyka, Cele Zrównoważonego Rozwoju

ALHOLJAILAN M.I., 2012, Thematic analysis: A critical review of its process and evaluation, West East Journal of Social Sciences, 1(1): 39-47.
  Google Scholar

ALLEN J. G., BERNSTEIN A., EITLAND E., CEDENO-LAURENT J., MACNAUGHTON P., SPENGLER J. D., WILLIAMS, A., 2017, Building for Health, The nexus of green buildings, global
  Google Scholar

health, and U.N. Sustainable Development Goals, Harvard T.H. Chan School of Public Health.
  Google Scholar

ALVES A., VOJINOVIC Z., KAPELAN Z., SANCHEZ A., GERSONIUS B., 2020, Exploring trade-offs among the multiple benefits of green-bluegrey infrastructure for urban flood mitigation, Science of the Total Environment, 703: 134980.
DOI: https://doi.org/10.1016/j.scitotenv.2019.134980   Google Scholar

BACCHIN T., ASHLEY R., BLECKEN G., VIKLANDER M., GERSONIUS B., 2016, Green-blue Infrastructure for Sustainable Cities: Innovative Socio-technical Solutions Bringing Multifunctional value, Novatech, 28 June/1 July: 1-4.
  Google Scholar

BAI X., NATH I., CAPON A., HASAN N., JARON D., 2012, Health and wellbeing in the changing urban environment: complex challenges, scientific responses, and the way forward, Current Opinion in Environmental Sustainability, 4(4): 465-472.
DOI: https://doi.org/10.1016/j.cosust.2012.09.009   Google Scholar

BAYNES T. M., WIEDMANN T., 2012, General approaches for assessing urban environmental sustainability, Current Opinion in Environmental Sustainability, 4: 458-464.
DOI: https://doi.org/10.1016/j.cosust.2012.09.003   Google Scholar

BLEWITT J., 2008, Understanding sustainable development, Earthscan, London.
  Google Scholar

BOWEN G.A., 2009, Document Analysis as a Qualitative Research Method, Qualitative Research Journal, 9(2): 27-40.
DOI: https://doi.org/10.3316/QRJ0902027   Google Scholar

BOZOVIC R., MAKSIMOVIC C., MIJIC A., SMITH K.M., SUTER I., VAN REEUWIJK M., 2017, Blue Green Solutions, A Systems Approach to Sustainable, Resilient and Cost-Efficient Urban Development, Climate-KIC Limited, Imperial College London, London.
  Google Scholar

BROWDER G., OZMENT S., BESCOS I. R., GARTNER T., LANGE G.-M, 2019, Integrating Green and Gray, Creating Next Generation Infrastructure, World Resources Institute, Washington, DC.
DOI: https://doi.org/10.46830/wrirpt.18.00028   Google Scholar

CENTER FOR NEIGHBORHOOD TECHNOLOGY, 2010, The Value of Green Infrastructure, A Guide to Recognizing Its Economic, Environmental and Social Benefits, Center for Neighborhood Technology, Washington, American Rivers, Chicago.
  Google Scholar

CHICAGO DEPARTMENT OF TRANSPORTATION, 2007, The Chicago green alley handbook: An action guide to create a greener, environmentally sustainable Chicago, City of Chicago, Chicago.
  Google Scholar

CONDON P. M., 2010, Seven rules for sustainable communities: design strategies for the post-carbon world, Island Press, Washington.
  Google Scholar

DE JONG M., JOSS S., SCHRAVEN D., ZHAN CH., WEIJNEN M., 2015, Sustainable–Smart–Resilient–Low Carbon–Eco–Knowledge Cities; Making sense of a multitude of concepts promoting sustainable urbanization, Journal of Cleaner Production, 109: 25-38.
DOI: https://doi.org/10.1016/j.jclepro.2015.02.004   Google Scholar

DE LEEUW E., TSOUROS A. D., DYAKOVA M., GREEN G., (Eds.), 2014, Healthy cities. Promoting health and equity – evidence for local policy and practice, Summary evaluation of Phase V of the WHO European Healthy Cities Network, WHO Regional Office for Europe, Copenhagen.
  Google Scholar

DELWP, 2017, Planning a Green-Blue City, A howto guide for planning urban greening and enhanced stormwater management in Victoria, Department of Environment, Land, Water and Planning (DELWP), Melbourne.
  Google Scholar

DEPIETRI Y., McPHEARSON T., 2017, Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction, Nature‐based Solutions to Climate Change Adaptation in Urban Areas, Linkages between Science, Policy and Practice, eds. Kabisch N. et al., Springer, Cham: 91-109.
DOI: https://doi.org/10.1007/978-3-319-56091-5_6   Google Scholar

EC, 2013a, Green infrastructure (GI)-enhancing Europe’s Natural Capital, COM(2013)249, European Commission, Brussels.
  Google Scholar

EDLUND F., 2020, The Function and Perception of Urban Ecosystem Services in the Society, Problemy ekorozwoju/ Problems of sustainable development, 15(1): 15-23.
DOI: https://doi.org/10.35784/pe.2020.1.02   Google Scholar

EEA, 2015, Exploring nature-based solutions: The role of green infrastructure in mitigating the impacts of weather- and climate change-related natural hazards, European Environment Agency, Publications Office of the European Union, Luxembourg.
  Google Scholar

ELMQVIST T., SETÄLÄ H., HANDEL S.N., VAN DER PLOEG S., ARONSON J., BLIGNAUT J.N., GÓMEZ-BAGGETHUN E., NOWAK D.J., KRONENBERG J., DE GROOT R., 2015, Benefits
  Google Scholar

of restoring ecosystem services in urban areas, Current Opinion in Environmental Sustainability, 14: 101-108.
DOI: https://doi.org/10.1016/j.cosust.2015.05.001   Google Scholar

ESCOBEDO F. J., GIANNICO V., JIM C. Y., SANESI G., LAFORTEZZA R., 2019, Urban forests, ecosystem services, green infrastructure and naturebased solutions: Nexus or evolving metaphors? Urban Forestry & Urban Greening, 37: 3-12.
DOI: https://doi.org/10.1016/j.ufug.2018.02.011   Google Scholar

EU, 2016, Mapping and Assessment of Ecosystems and their Services, Urban ecosystems, 4th Report, European Union, Office for Official Publications of the European Communities, Luxembourg.
  Google Scholar

FALTERMAIER M., STOCK H., TONNDORF T., eds., 2016, Stadtentwicklungsplan Klima KONKRET Klimaanpassung in der Wachsenden Stadt, Senatsverwaltung für Stadtentwicklung und Umwelt, Berlin.
  Google Scholar

FARRELLY M., BROWN R., 2011, Rethinking urban water management: Experimentation as a way forward? Global Environmental Change, 21: 721-732.
DOI: https://doi.org/10.1016/j.gloenvcha.2011.01.007   Google Scholar

FLETCHER T.D., SHUSTER W., HUNT W.F., ASHLEY R., BUTLER D., ARTHUR S., TROWSDALE S., BARRAUD S., SEMADENI-DAVIES A., BERTRAND-KRAJEWSKI J.-L., MIKKELSEN
  Google Scholar

P.S., RIVARD G., UHL M., DAGENAIS D., VIKLANDER M., 2015, SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage, Urban Water Journal, 12(7): 525-542.
DOI: https://doi.org/10.1080/1573062X.2014.916314   Google Scholar

FREYLING V., 2015, The importance of all Sustainable Development Goals (SDGs) for cities and communities, ICLEI BRIEFING SHEET – Urban Issues, 4, ICLEI – Local Governments for Sustainability.
  Google Scholar

FRISCHENBRUDER M.T.M., PELLEGRINO P., 2006, Using greenways to reclaim nature in Brazilian cities, Landscape and Urban Planning, 76(1-4): 67-78.
DOI: https://doi.org/10.1016/j.landurbplan.2004.09.043   Google Scholar

FUGARD A.J.B., POTTS H.W.W., 2015, Supporting thinking on sample sizes for thematic analyses: a quantitative tool, International Journal of Social Research Methodology, (18)6: 669-684.
DOI: https://doi.org/10.1080/13645579.2015.1005453   Google Scholar

GEHRELS H., VAN DER MEULEN S., SCHASFOORT F., eds., 2016, Designing green and blue infrastructure to support healthy urban living, TO2 federatie.
  Google Scholar

GHOFRANI Z., SPOSITO V., FAGGIAN R., 2017, A Comprehensive Review of Blue-Green Infrastructure Concepts, International Journal of Environment and Sustainability, 6(1): 15-36.
DOI: https://doi.org/10.24102/ijes.v6i1.728   Google Scholar

GIORDANO F., CAPRIOLO A., MASCOLO R.A., 2013, Planning for adaptation to climate change, Guidelines for municipalities, Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma.
  Google Scholar

HEGETSCHWEILER K.T., DE VRIES S., ARNBERGER A., BELL S., BRENNAN M., SITER N., OLAFSSON A.S., VOIGT A., HUNZIGER M.,
  Google Scholar

, Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: A review of European studies, Urban Forestry & Urban Greening, 21: 48-59.
DOI: https://doi.org/10.1016/j.ufug.2016.11.002   Google Scholar

HOANG L., FENNER R.A., 2016, System interactions of stormwater management using sustainable urban drainage systems and green infrastructure, Urban Water Journal, 13(7): 739-758.
DOI: https://doi.org/10.1080/1573062X.2015.1036083   Google Scholar

HOANG L., FENNER R.A., SKENDERIAN M., 2017, A conceptual approach for evaluating the multiple benefits of urban flood management practices, Journal of Flood Risk Management, 11: S943-S959.
DOI: https://doi.org/10.1111/jfr3.12267   Google Scholar

HOWE C., MITCHELL C., eds., 2012, Water Sensitive Cities, IWA Publishing, London.
DOI: https://doi.org/10.2166/9781843393641   Google Scholar

KABISCH N., KORN H., STADLER J., BONN A., 2017, Nature-Based Solutions to Climate Change Adaptation in Urban Areas – Linkages Between Science, Policy and Practice, in: Nature‐based Solutions to Climate Change Adaptation in Urban Areas, Linkages between Science, Policy and Practice, eds. Kabisch N. et al., Springer, Cham: 1-11.
DOI: https://doi.org/10.1007/978-3-319-56091-5_1   Google Scholar

KAZMIERCZAK A., CARTER J., 2010, Adaptation to climate change using green and blue infrastructure, A database of case studies, University of Manchester, Manchester.
  Google Scholar

KOC C.B., OSMOND P., PETERS A., 2017, Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies, Urban Ecosystems, (20): 15-35.
DOI: https://doi.org/10.1007/s11252-016-0578-5   Google Scholar

KOPP J., PREIS J., 2019, The potential implementation of stormwater retention ponds into the blue-green infrastructure of the suburban landscape of Pilsen, Czechia, Applied Ecology and Environmental Research, 17(6): 15055-15072.
DOI: https://doi.org/10.15666/aeer/1706_1505515072   Google Scholar

KOPP J., RAŠKA P., VYSOUDIL M., JEŽEK J., DOLEJŠ M., VEITH T., FRAJER J., NOVOTNÁ M., HAŠOVÁ E., 2017, Ekohydrologický management mikrostruktur městské krajiny, University of West Bohemia, Plzeň.
  Google Scholar

KRAUZE K., WAGNER I., 2019, From classical water-ecosystem theories to nature-based solutions – Contextualizing nature-based solutions for sustainable city, Science of the Total Environment, 655: 697-706.
DOI: https://doi.org/10.1016/j.scitotenv.2018.11.187   Google Scholar

LAMOND J., EVERETT G., 2019, Sustainable BlueGreen Infrastructure: A social practice approach to understanding community preferences and stewardship, Landscape and Urban Planning, 191: 103639.
DOI: https://doi.org/10.1016/j.landurbplan.2019.103639   Google Scholar

LEHNERT M., TOKAR V., JUREK M., GELETIČ J., 2020, Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres, International Journal of Biometeorology, https://doi.org/10.1007/s00484-020-02010-y.
DOI: https://doi.org/10.1007/s00484-020-02010-y   Google Scholar

LOUDA J., MACHAC J., DUBOVA L., 2016, Green and Blue Infrastructure: An Opportunity for Smart Cities? in: Smart Cities Symposium Prague (SCSP), May 26-27, 2016, Prague.
DOI: https://doi.org/10.1109/SCSP.2016.7501030   Google Scholar

MELL I., ALLIN S., REIMER M., WILKER J., 2017, Strategic green infrastructure planning in Germany and the UK: a transnational evaluation of the evolution of urban greening policy and practice, International Planning Studies, 22(4): 333-349.
DOI: https://doi.org/10.1080/13563475.2017.1291334   Google Scholar

MORISON P.J., BROWN R.R., 2011, Understanding the nature of publics and local policy commitment to Water Sensitive Urban Design, Landscape and Urban Planning, 99: 83-92.
DOI: https://doi.org/10.1016/j.landurbplan.2010.08.019   Google Scholar

MROWIEC M., OCIEPA E., MALMUR R., DESKA I., 2018, Sustainable Water Management in Cities under Climate Changes, Problemy ekorozwoju/ Problems of sustainable development, 13(1): 133-138.
  Google Scholar

MROWIEC, M., 2016, Sustainable Urban Drainage Infrastructure, Problemy ekorozwoju/ Problems of sustainable development, 11(2): 113-118.
  Google Scholar

NEIROTTI P., DE MARCO A., CAGLIANO A.C., MANGANO G., SCORRANO F., 2014, Current trends in Smart City initiatives: Some stylised facts, Cities, 38: 25-36.
DOI: https://doi.org/10.1016/j.cities.2013.12.010   Google Scholar

NEWELL J.P., SEYMOUR M., YEE T., RENTERIA J., LONGCORE T., WOLCH J.R., SHISHKOVSKY A., 2013, Green Alley Programs: Planning for a sustainable urban infrastructure? Cities, 31: 144-155.
DOI: https://doi.org/10.1016/j.cities.2012.07.004   Google Scholar

PAULEIT S., AMBROSE-OJI B., ANDERSSON E., ANTON B., BUIJS A., HAASE D., ELANDS B., HANSEN R., KOWARIK I., KRONENBERG J., MATTIJSSEN T., OLAFSSON A. S., RALL E.,
  Google Scholar

VAN DER JAGT A. P.N., VAN DEN BOSCH C. K., 2019, Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project, Urban Forestry & Urban Greening, 40: 4-16.
DOI: https://doi.org/10.1016/j.ufug.2018.10.006   Google Scholar

PAULEIT S., ZÖLCH T., HANSEN R., RANDRUP T. B., KONIJNENDIJK VAN DEN BOSCH C., 2017, Nature-Based Solutions and Climate Change – Four Shades of Green, Nature‐based Solutions to Climate Change Adaptation in Urban Areas, Linkages between Science, eds. Kabisch N. et al., Policy and Practice, Springer, Cham: 29-49.
DOI: https://doi.org/10.1007/978-3-319-56091-5_3   Google Scholar

PERINI K., SABBION P., 2017, Urban Sustainability and River Restoration, Green and Blue Infrastructure, WILEY Blackwell, Chichester.
DOI: https://doi.org/10.1002/9781119245025   Google Scholar

PHILADELPHIA WATER DEPARTMENT, 2009, Green City Clean Waters, The City of Philadelphia’s Program for Combined Sewer Overflow Control, A Long Term Control Plan Update, Summary Report, Philadelphia Water Department, Philadelphia.
  Google Scholar

PLANNING DEPARTMENT HKSARG, 2016, Green and Blue Space Conceptual Framework. Hong Kong 2030+.
  Google Scholar

PÖTZ H., 2016, Green-blue urban grids for sustainable and resilient cities, Water challenge, Atelier Groenblauw, Delft,
  Google Scholar

PURVIS B., MAO Y., ROBINSON D., 2019, Three pillars of sustainability: in search of conceptual origins, Sustainability Science, 14: 681-695.
DOI: https://doi.org/10.1007/s11625-018-0627-5   Google Scholar

SCHANDL H., BOYDEN S., CAPON A., HOSKING K., 2012,‘Biosensitive’ cities – a conceptual framework for integrative understanding of the health of people and planetary ecosystems, Current Opinion in Environmental Sustainability, 4: 378-384.
DOI: https://doi.org/10.1016/j.cosust.2012.08.007   Google Scholar

SCHRIJNEN P.M., 2000, Infrastructure networks and red-green patterns in city regions, Landscape and Urban Planning, 48(3-4): 191-204.
DOI: https://doi.org/10.1016/S0169-2046(00)00042-6   Google Scholar

SEXTON G., JEREMIAH S., 2017, The Southeast Tennessee Green Infrastructure Handbook for Local Governments, Chattanooga Area Regional Council of Governments.
  Google Scholar

SILVA J. M. C., WHEELER E., 2017, Ecosystems as infrastructure, Perspectives in Ecology and Conservation, 15: 32-35.
DOI: https://doi.org/10.1016/j.pecon.2016.11.005   Google Scholar

SØRUP H. J. D., FRYD O., LIU L., ARNBJERGNIELSEN K., JENSEN M. B., 2019, An SDG-based framework for assessing urban stormwater management systems, Blue-Green Systems, 1(1): 102-118.
DOI: https://doi.org/10.2166/bgs.2019.922   Google Scholar

STRICKLAND C., LICATA A., SISKIND E., 2010, NYC Green Infrastructure Plan, NYC Department of Environmental Protection, New York.
  Google Scholar

SUSSAMS L.W., SHEATE W.R., EALES R.P., 2015, Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? Journal of Environmental Management, 147: 184-193.
DOI: https://doi.org/10.1016/j.jenvman.2014.09.003   Google Scholar

SZULCZEWSKA B., GIEDYCH R., MAKSYMIUK G., 2017, Can we face the challenge: how to implement a theoretical concept of green infrastructure into planning practice? Warsaw case study, Landscape Research, 42(2): 176-194.
DOI: https://doi.org/10.1080/01426397.2016.1240764   Google Scholar

THORNE, C., ed., 2016, Delivering and Evaluating Multiple Flood Risk Benefits in Blue-Green Cities, Key Project Outputs, EPSRC Project EP/K013661/1, University of Nottingham, Nottingham.
  Google Scholar

UK GREEN BUILDING COUNCIL, 2015, Demystifying Green Infrastructure, UK Green Building Council, London.
  Google Scholar

UN, 2012, Challenges and way forward in the urban sector, Sustainable Development in the 21st century (SD21), United Nations Department of Economic and Social Affairs.
  Google Scholar

UNITED NATIONS, 2015, Transforming Our World, the 2030 Agenda for Sustainable Development, General Assembly Resolution A/RES/70/1.
  Google Scholar

VAN TIMMEREN A., BACCHIN T. K., AIRES C., 2016, Green Blue Infrastructures: Overview of Smart Spatial Strategies: implications for future innovation in design processes, Department of Urbanism Faculty of Architecture and the Built Environment, Delft University of Technology, Delft.
  Google Scholar

VIERIKKO K., NIEMELÄ J., 2016, Bottom-up thinking – Identifying socio-cultural values of ecosystem services in local blue–green infrastructure planning in Helsinki, Finland, Land Use Policy, 50:537-547.
DOI: https://doi.org/10.1016/j.landusepol.2015.09.031   Google Scholar

VLAAMSE LANDMAATSCHAPPIJ 2015, Green4grey, Green and Blue infrastructure for grey peri-urban landscapes, Vlaamse Landmaatschappij, Leuven.
  Google Scholar

VÖLKER S., KISTEMANN T., 2015, Developing the urban blue: Comparative health responses to blue and green urban open spaces in Germany, Health & Place, (35): 196-205.
DOI: https://doi.org/10.1016/j.healthplace.2014.10.015   Google Scholar

VOSKAMP I.M., VAN DE VEN F.H.M., 2015, Planning support system for climate adaptation: composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events, Building and Environment, (83): 159-167.
DOI: https://doi.org/10.1016/j.buildenv.2014.07.018   Google Scholar

WAGNER I., BREIL P., 2013, The role of ecohydrology in creating more resilient cities, Ecohydrology & Hydrobiology, 13(2): 113-134.
DOI: https://doi.org/10.1016/j.ecohyd.2013.06.002   Google Scholar

WAGNER I., KRAUZE K., ZALEWSKI M., 2013, Blue aspects of green infrastructure, Sustainable Development Applications, 4: 145-155.
  Google Scholar

WANG Y.-C., SHEN J.-K., XIANG W.-N., 2018, Ecosystem service of green infrastructure for adaptation to urban growth: function and configuration, Ecosystem Health and Sustainability, 4(5): 132-143.
DOI: https://doi.org/10.1080/20964129.2018.1474721   Google Scholar

WATER BY DESIGN, 2009, Concept Design Guidelines for Water Sensitive Urban Design, Brisbane, South East Queensland Healthy Waterways Partnership.
  Google Scholar

WEF, 2014, Green infrastructure implementation: a special publication, WEF special publication, Water Environment Federation, Alexandria.
  Google Scholar

WONG T. H. F., BROWN R., 2009, The water sensitive city: principles for practice, Water Science & Technology, 60(3): 673-682.
DOI: https://doi.org/10.2166/wst.2009.436   Google Scholar

WOODBRIDGE M., 2015, Cities and the Sustainable Development Goals, ICLEI BRIEFING SHEET – Urban Issues, 2, ICLEI – Local Governments for Sustainability.
  Google Scholar

WOODS BALLARD B., WILSON S., UDALECLARKE H., ILLMAN S., SCOTT T., ASHLEY R., KELLAGHER R., 2015, The SUDS manual (C753), CIRIA, London.
  Google Scholar

WÖRLEN M., WANSCHURA B., DREISEITL H., NOIVA K., WESCOAT J., MOLDASCHL M., eds., 2016, Strengthening blue-green infrastructure in our cities, Enhancing Blue-Green Infrastructure and Social Performance in High Density Urban Environments, Ramboll Liveable Cities Lab, Überlingen.
  Google Scholar

WOUTERS P., DREISEITL H., WANSCHURA B., WÖRLEN M., MOLDASCHL M., WESCOAT J., NOIVA K., 2016, Blue-green infrastructures as tools for the management of urban development and the effects of climate change, Ramboll Environ, Madrid.
  Google Scholar

YOUNG R., ZANDERS J., LIEBERKNECHT K., FASSMAN-BECK E., 2014, A comprehensive typology for mainstreaming urban green infrastructure, Journal of Hydrology, 519(C): 2571-2583.
DOI: https://doi.org/10.1016/j.jhydrol.2014.05.048   Google Scholar

ZALEWSKI M., 2000, Ecohydrology – the scientific background to use ecosystem properties management tools toward sustainability of water resources, Ecological Engineering, (16): 1-8.
DOI: https://doi.org/10.1016/S0925-8574(00)00071-9   Google Scholar

ZALEWSKI M., 2015, Ecohydrology and hydrologic engineering: regulation of hydrology-biota interactions for sustainability, Journal of Hydrologic Engineering, 20(1): A4014012.
DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000999   Google Scholar

ZARĘBA A., 2014, Multifunctional and Multiscale Aspects of Green Infrastructure in Contemporary Research, Problemy ekorozwoju/ Problems of sustainable development, 9(2): 149-156.
  Google Scholar


Opublikowane
2021-07-01

Cited By / Share

Kopp, J., Frajer, J., Lehnert, M., Kohout, M., & Ježek, J. (2021). Integracja koncepcji niebiesko-zielonej infrastruktury jako narzędzie wspierania interdyscyplinarnego planowania Zrównoważonych Miast. Problemy Ekorozwoju Problems of Sustainable Development, 16(2), 137–146. https://doi.org/10.35784/pe.2021.2.14

Autorzy

Jan Kopp 

Department of Geography, Faculty of Economics, University of West Bohemia, Univerzitní 22, 306 14 Plzeň Czechy
https://orcid.org/0000-0002-4768-613X

Autorzy

Jindřich Frajer 

Department of Geography, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc Czechy
https://orcid.org/0000-0003-0817-3128

Autorzy

Michal Lehnert 

Department of Geography, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc Czechy
https://orcid.org/0000-0001-7691-1618

Autorzy

Michal Kohout 

Department of Geography and Environmental Studies, California State University, San Bernardino, 5500 University Parkway, San Bernardino CA 92407, USA Stany Zjednoczone

Autorzy

Jiří Ježek 

Department of Geography, Faculty of Economics, University of West Bohemia, Univerzitní 22, 306 14 Plzeň Czechy

Statystyki

Abstract views: 173
PDF downloads: 60