Przestrzenny i czasowy rozkład wpływu czynników społeczno-ekonomicznych na zanieczyszczenie wody w Chinach
Bizhen Chen
1343700050@qq.comSchool of Information Management, Minnan University of Science and Technology (Chiny)
Shanshan Xie
School of Information Management, Minnan University of Science and Technology (Chiny)
Dehong Sun
School of Information Management, Minnan University of Science and Technology (Chiny)
Abstrakt
Dostęp do bezpiecznej wody i zapewnienie zdrowia mieszkańców należą do najważniejszych Celów Zrównoważonego Rozwoju Organizacji Narodów Zjednoczonych (SDGs). Zanieczyszczenie wody ma znaczący wpływ na zdrowie mieszkańców, a istnieje wiele czynników, które zwiększają zanieczyszczenie wody. W tym badaniu zastosowaliśmy model regresji ważonej geograficznie i czasowo (GTWR) do analizy charakterystyki czasoprzestrzennego rozkładu czynników wpływających na zanieczyszczenie wody w Chinach w latach 2005-2021. Dlatego w tym artykule przyjęto emisję chemicznego zapotrzebowania tlenu (CODE) jako zależną zmienną, a zmiennymi niezależnymi są końcowa liczba ludności (EPP), wskaźnik urbanizacji (UR), całkowita zdolność produkcyjna zaopatrzenia w wodę (CPCOWS), PKB na mieszkańca (PCGDP), udział zużycia wody przemysłowej (IWCP) i zużycie wody na mieszkańca (PCWC). Wnioski są następujące: (1) Czasowa ewolucja CODE w różnych regionach jest wysoce spójna, przy czym kolejność zagrożeń wynikających z zanieczyszczenia wody jest następująca: regiony centralny, północno-wschodni, wschodni i zachodni. (2) Wpływ różnych czynników na zanieczyszczenie wody jest wyraźnie zróżnicowany przestrzennie i czasowo. Ogólnie rzecz biorąc, EPP, UR, CPCOWS i PCWC mają pozytywny wpływ na zanieczyszczenie wody, a PCGDP i IWCP mają skutki negatywne. (3) Kierunek wpływu EPP i PCGDP na CODE pozostaje spójny we wszystkich regionach. Oddziaływania UR występują głównie na północnym wschodzie, oddziaływania CPCOWS występują głównie na wschodzie, środku i północnym wschodzie, oddziaływania IWCP występują głównie w środkowej i zachodniej części, a oddziaływania PCWC występują głównie na wschodzie i w środku. W końcowej części pracy zaproponowano praktyczne i wykonalne zalecenia polityczne dla różnych regionów.
Słowa kluczowe:
czynniki społeczno-ekonomiczne, zanieczyszczenie wody, środowisko wodne, chemiczne zapotrzebowanie na tlen, regresja ważona geograficznie i czasowoBibliografia
AN M., HUANG X., JIA L., ZHANG Y., HUANG J., KHANAL R., 2022, Simulation study of the multi-driver regulation strategy for an urban water pollution system, Frontiers in Environmental Science, 10: 925176.
DOI: https://doi.org/10.3389/fenvs.2022.925176
Google Scholar
AN M., SONG Y., JIANG J., FU G., WANG Y., WAN X., 2023, Water Quality Evaluation, Spatial Distribution Characteristics, and Source Analysis of Pollutants in Wanquan River, China, Applied Sciences, 13(13): 7982.
DOI: https://doi.org/10.3390/app13137982
Google Scholar
BAI Y., WU L., KAI Q., ZHANG Y.F., SHEN Y.Y., ZHOU Y., 2016, A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500m resolution AOD, Remote Sensing, 8(3): 262.
DOI: https://doi.org/10.3390/rs8030262
Google Scholar
CHEN X., SHAO Y., ZHAO X., 2023, Does export liberalization cause the agglomeration of pollution? Evidence from China, China Economic Review, 79: 101951.
DOI: https://doi.org/10.1016/j.chieco.2023.101951
Google Scholar
CHEN Y., LI C., LI, X., ZHANG X., TAN Q., 2022, Efficiency of Water Pollution Control Based on a Three-Stage SBM-DEA Model, Water, 14(9): 1453.
DOI: https://doi.org/10.3390/w14091453
Google Scholar
CHOU L., DAI J., QIAN X., KARIMIPOUR A., ZHENG X., 2021, Achieving sustainable soil and water protection: The perspective of agricultural water price regulation on environmental protection, Agricultural Water Management, 245: 106583.
DOI: https://doi.org/10.1016/j.agwat.2020.106583
Google Scholar
DAI S., NIE G., WU Z., 2018, Research on government supervision and enterprise water pollution control based on the principal-agent model, Desalination And Water Treatment, 121: 213-218.
DOI: https://doi.org/10.5004/dwt.2018.22463
Google Scholar
HAN Y., LI N., MU H., GUO R., YAO R., SHAO Z., 2022, Convergence study of water pollution emission intensity in China: Evidence from spatial effects, Environmental Science and Pollution Research, 29(33): 50790-50803.
DOI: https://doi.org/10.1007/s11356-022-19030-3
Google Scholar
HUANG B., WU B., BARRY M., 2010, Geographically and temporally weighted regression for modelling spatio-temporal variation in house prices, International Journal of Geographical Information Science, 24(3-4): 383-401.
DOI: https://doi.org/10.1080/13658810802672469
Google Scholar
HUANG C., WANG C.-M., 2022, Water pollution, industrial agglomeration and economic growth: Evidence from China, Frontiers in Environmental Science, 10: 1071849.
DOI: https://doi.org/10.3389/fenvs.2022.1071849
Google Scholar
JI H., PENG D., FAN C., ZHAO K., GU Y., LIANG Y., 2022, Assessing effects of non-point source pollution emission control schemes on Beijing’s sub-center with a water environment model, Urban Climate, 43: 101148.
DOI: https://doi.org/10.1016/j.uclim.2022.101148
Google Scholar
LI H., YANG Z., LIU G., CASAZZA M., YIN X., 2017, Analyzing virtual water pollution transfer embodied in econom-ic activities based on gray water footprint: A case study, Journal of Cleaner Production, 161: 1064-1073.
DOI: https://doi.org/10.1016/j.jclepro.2017.05.155
Google Scholar
LIN L., YANG H., XU X., 2022, Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review, Frontiers in Environmental Science, 10: 880246.
DOI: https://doi.org/10.3389/fenvs.2022.880246
Google Scholar
LING M., LV C., GUO X, 2018, Quantification method of water environmental value loss caused by water pollution based on emergy theory, Desalination and Water Treatment, 129: 299-303.
DOI: https://doi.org/10.5004/dwt.2018.23196
Google Scholar
LIU Y., ZHANG Z., ZHANG F., 2019, Challenges for Water Security and Sustainable Socio-Economic Development: A Case Study of Industrial, Domestic Water Use and Pollution Management in Shandong, China, Water, 11(8) 1630.
DOI: https://doi.org/10.3390/w11081630
Google Scholar
LU N., VILLA K. M., 2022, Agricultural support and contaminated spillovers: The effects of agricultural water pollution on adult health in China, Applied Economic Perspectives and Policy, 44(2): 788-821.
DOI: https://doi.org/10.1002/aepp.13195
Google Scholar
LUO Y., WU J., XU Y., 2022, Can self-governance tackle the water commons? Causal evidence of the effect of rural water pollution treatment on farmers’ health in China, Ecological Economics, 198: 107471.
DOI: https://doi.org/10.1016/j.ecolecon.2022.107471
Google Scholar
NOOR R., MAQSOOD A., BAIG A., PANDE C. B., ZAHRA S. M., SAAD A., ANWAR M., SINGH S. K., 2023, A comprehensive review on water pollution, South Asia Region: Pakistan, Urban Climate, 48: 101413.
DOI: https://doi.org/10.1016/j.uclim.2023.101413
Google Scholar
QU G., 2020, An Evaluation Method for Water Pollution Treatment Efficiency in Coastal Cities Based on Regional Man-agement, Journal of Coastal Research, 110(sp1).
DOI: https://doi.org/10.2112/JCR-SI110-024.1
Google Scholar
SHENG J., TANG W., 2021, Spatiotemporal variation patterns of water pollution drivers: The case of China’s south-north water transfer project, Science of The Total Environment, 761: 143190.
DOI: https://doi.org/10.1016/j.scitotenv.2020.143190
Google Scholar
SON C. T., GIANG N. T. H., THAO T. P., NUI N. H., LAM N. T., CONG V. H., 2020, Assessment of Cau River water quality assessment using a combination of water quality and pollution indices, Journal of Water Supply: Research and Technology-Aqua, 69(2): 160-172.
DOI: https://doi.org/10.2166/aqua.2020.122
Google Scholar
SONG J., WU D., 2022, An innovative transboundary pollution control model using water credit, Computers & Indus-trial Engineering, 171: 108235.
DOI: https://doi.org/10.1016/j.cie.2022.108235
Google Scholar
STROKAL V, 2021, Transboundary rivers of Ukraine: Perspectives for sustainable development and clean water, Jour-nal of Integrative Environmental Sciences, 18(1): 67-87.
DOI: https://doi.org/10.1080/1943815X.2021.1930058
Google Scholar
THOMPSON A., JEFFORDS C., 2017, Virtual Water and an EKC for Water Pollution, Water Resources Management, 31(3): 1061-1066.
DOI: https://doi.org/10.1007/s11269-016-1541-1
Google Scholar
ANG E., LI Q., HU H., PENG F., ZHANG P., LI, J., 2019, Spatial characteristics and influencing factors of river pollu-tion in China, Water Environment Research, 91(4), 351-363.
DOI: https://doi.org/10.1002/wer.1044
Google Scholar
WANG Q., YANG Z., 2016, Industrial water pollution, water environment treatment, and health risks in China, Environ-mental Pollution, 218: 358-365.
DOI: https://doi.org/10.1016/j.envpol.2016.07.011
Google Scholar
WANG X., ZHAO D., ZHANG L., HU H., MA Y., MA J., 2021, Relations between upgrading of industrial structure, innovation of green technology and water environmental pollution: Estimation based on dynamic simultaneous equation, Desalination and Water Treatment, 218: 80-86.
DOI: https://doi.org/10.5004/dwt.2021.26946
Google Scholar
WEERASOORIYA R. R., LIYANAGE L. P. K., RATHNAPPRIYA R. H. K., BANDARA W. B. M. A. C., PERERA T. A. N. T., GUNARATHNA M. H. J. P., JAYASINGHE G. Y., 2021, Industrial water conservation by water footprint and sustainable development goals: A review, Environment, Development and Sustainability, 23(9) 12661-12709.
DOI: https://doi.org/10.1007/s10668-020-01184-0
Google Scholar
WU G., CAO W., LIU L., WANG F, 2018, Water pollution management in China: Recent incidents and proposed im-provements, Water Supply, 18(2): 603-611.
DOI: https://doi.org/10.2166/ws.2017.139
Google Scholar
WU Y., ZHAO S., 2023, Status quo and change characteristics of groundwater resources pollution in the Hami region based on sustainable development strategies, Water Supply, 23(3): 1478-1494.
DOI: https://doi.org/10.2166/ws.2023.063
Google Scholar
XU H., GAO Q., YUAN B., 2022, Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China, Ecological Indicators, 135: 108561.
DOI: https://doi.org/10.1016/j.ecolind.2022.108561
Google Scholar
XU X., ZHANG Y., WUL., 2023, The layout and the spatio-temporal evolution of water-polluting enterprises in Zhejiang under regulation, Frontiers in Environmental Science, 11: 1121598.
DOI: https://doi.org/10.3389/fenvs.2023.1121598
Google Scholar
YE Q., 2020, Quality Evaluation of Ecological Restoration of Urban Water Pollution based on Analytic Hierarchy Pro-cess, Journal of Coastal Research, 104(sp1).
DOI: https://doi.org/10.2112/JCR-SI104-003.1
Google Scholar
ZHANG H., LI W., MIAO P., SUN B., KONG F., 2020, Risk grade assessment of sudden water pollution based on analytic hierarchy process and fuzzy comprehensive evaluation, Environmental Science and Pollution Research, 27(1): 469-481.
DOI: https://doi.org/10.1007/s11356-019-06517-9
Google Scholar
ZHANG J., LI H., JIAO G., WANG J., LI J., LI M., JIANG H., 2022, Spatial Pattern of Technological Innovation in the Yangtze River Delta Region and Its Impact on Water Pollution, International Journal of Environmental Research and Public Health, 19(12): 7437.
DOI: https://doi.org/10.3390/ijerph19127437
Google Scholar
ZHANG K., WANG S., LIU S., LIU K., YAN J., LI X., 2022, Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China, Sustainability, 14(15) 9219.
DOI: https://doi.org/10.3390/su14159219
Google Scholar
ZHOU Z., LIU J., ZHOU N., ZHANG T., ZENG H., 2021, Does the '10-Point Water Plan' reduce the intensity of indus-trial water pollution? Quasi-experimental evidence from China, Journal of Environmental Management, 295: 113048.
DOI: https://doi.org/10.1016/j.jenvman.2021.113048
Google Scholar
Autorzy
Bizhen Chen1343700050@qq.com
School of Information Management, Minnan University of Science and Technology Chiny
Autorzy
Shanshan XieSchool of Information Management, Minnan University of Science and Technology Chiny
Autorzy
Dehong SunSchool of Information Management, Minnan University of Science and Technology Chiny
Statystyki
Abstract views: 107PDF downloads: 297