Związek pomiędzy ekspansją ekologicznych gruntów rolnych a emisją gazów cieplarnianych w Europie w kontekście wdrażania Celów zrównoważonego rozwoju

Serhii Kozlovskyi

s.kozlovskyy@donnu.edu.ua
Vasyl’ Stus Donetsk National University (Ukraina)
https://orcid.org/0000-0003-0707-4996

Ivan Zayukov


State University of Trade and Economics, Vinnytsia Institute of Trade and Economics (Ukraina)
https://orcid.org/0000-0002-7225-2827

Volodymyr Kozlovskyi


Vinnytsia National Technical University (Ukraina)
https://orcid.org/0000-0002-0955-4347

Oleksandr Tregubov


Vasyl’ Stus Donetsk National University (Ukraina)
https://orcid.org/0000-0002-0397-5570

Sviatoslav Storchak


Vasyl’ Stus Donetsk National University (Ukraina)
https://orcid.org/0009-0009-2119-3351

Viktor Mishchenko


Vasyl’ Stus Donetsk National University (Ukraina)
https://orcid.org/0009-0008-7802-3700

Ruslan Lavrov


T.H. Shevchenko National University, Chernihiv Colehium (Ukraina)
https://orcid.org/0000-0002-9655-4467

Abstrakt

Społeczność globalna dąży do osiągnięcia ambitnych Celów Zrównoważonego Rozwoju. Istotnym aspektem realizacji Celów jest wprowadzenie produkcji ekologicznej w rolnictwie. Przyczyni się to między innymi do zerowego głodu (Cel 2); zapewnienia ludzkości alternatywnych źródeł energii (Cel 7); opracowania innowacyjnych rozwiązań (Cel 9); motywacji ludności do odpowiedzialnej konsumpcji, w tym żywności (Cel 12); walki ze zmianą klimatu (Cel 13); oraz zachowania ekosystemów zarówno na lądzie, jak i pod wodą (Cele 14-15). Ważnym obszarem realizacji wszystkich siedemnastu celów jest wprowadzenie produkcji ekologicznej w rolnictwie. Przyczyni się to do zapewnienia ludności żywności; poprawy zdrowia publicznego; przezwyciężenie problemów związanych z głodem, ubóstwem, złym stanem zdrowia, ograniczoną ilością czystej wody pitnej, niedoborami energii, wyczerpywaniem się zasobów naturalnych, zmianami klimatu i zanieczyszczeniem ekosystemów wodnych i lądowych. Kraje UE-27 muszą zredukować emisję gazów cieplarnianych do zera do 2050 r., co jest dodatkowym wyzwaniem. Z tego powodu w artykule postawiono hipotezę, że ekspansja ekologicznych gruntów rolnych potencjalnie doprowadzi do wzrostu emisji gazów cieplarnianych. W związku z tym celem artykułu jest przeprowadzenie badań empirycznych nad wpływem ekspansji ekologicznych gruntów rolnych na wzrost emisji gazów cieplarnianych w UE. Analiza korelacji i regresji oparta na wykorzystaniu dostępnych statystyk Eurostatu za okres 2014–2021 dla wybranych poszczególnych krajów europejskich wykazała, że ​​większość krajów europejskich wykazuje wysoki stopień korelacji. Zgodnie z danymi ze wszystkich państw członkowskich UE (27) związek ten jest silny i wprost proporcjonalny. Stwierdzono, że wraz ze wzrostem powierzchni ekologicznych gruntów rolnych o 1% w UE27 emisja gazów cieplarnianych wzrośnie o 0,00000025 tys. ton. Obliczenia wykazały, że ceteris paribus emisja gazów cieplarnianych  pod wpływem ekspansji ekologicznych gruntów rolnych może wzrosnąć o 62,4%. Wśród badanych krajów europejskich podobne tendencje obserwuje się w Danii, Niemczech, Estonii, Hiszpanii, Holandii, Portugalii, Rumunii, Finlandii, Szwajcarii i Wielkiej Brytanii. Tymczasem na Litwie i w Holandii zależność jest odwrotnie proporcjonalna. Słabą korelację, o czym świadczy obliczony współczynnik korelacji, obserwuje się w takich krajach europejskich jak Bułgaria (0,05); Polska (0,02); Słowacja (0,05). Aby wdrożyć Cele Zrównoważonego Rozwoju, zaleca się podjęcie działań mających na celu zmianę kultury konsumpcji żywności; efektywniejsze wykorzystanie technologii, metod, sprzętu, maszyn i mechanizmów rolniczych; racjonalne wykorzystanie odpadów.


Słowa kluczowe:

zrównoważony rozwój, produkcja organiczna, gazy cieplarniane, modelowanie, analiza korelacji i regresji, bezpieczeństwo ekonomiczne, bezpieczeństwo żywnościowe, sektor rolniczy, ekologia, gospodarka międzynarodowa, Europa

1. AVASILOAIEI D., CALARA M., BREZEANU P., GRUDA N., BREZEANU C., 2023, The Evaluation of Carbon Farming Strategies in Organic Vegetable Cultivation, Agronomy 13(9): 2406, https://doi.org/10.3390/agronomy13092406.
DOI: https://doi.org/10.3390/agronomy13092406   Google Scholar

2. ADEWALE C., HIGGINS S., GRANATSTEIN D., STÖCKLE C.O., CARLSON B.R., ZAHER U.E., CARPENTER-BOGGS L., 2016, Identifying Hotspots in the Carbon Footprint of a Small Scale Organic Vegetable Farm, Agricultural Systems 149: 112-121, https://doi.org/10.1016/j.agsy.2016.09.004.
DOI: https://doi.org/10.1016/j.agsy.2016.09.004   Google Scholar

3. ARCIPOWSKA A., MANGAN E., WAITE R., 2019, 5 Questions About Agricultural Emissions, Answered, https://www.wri.org/insights/5-questions-about-agricultural-emissions-answered.
  Google Scholar

4. BASNET S., WOOD A., ROOS E., JANSSON T., 2023, Organic agriculture in a low-emission world: exploring combined measures to deliver sustainable food system in Sweden, Renewable Agriculture and Food Systems 18(6517): 1-19, https://doi.org/10.1017/S1742170510000116.
DOI: https://doi.org/10.1007/s11625-022-01279-9   Google Scholar

5. BERSANI C., OUAMMI A., SACILE R., ZERO E., 2020, Model predictive control of smart greenhouses as the path towards near zero energy consumption, Energies 13(14): 3647, https://doi.org/10.3390/en13143647.
DOI: https://doi.org/10.3390/en13143647   Google Scholar

6. BHAVSAR A., HINGAR D., OSTWAL S., THAKKAR I., JADEJA S., SHAH M, 2023, The Current Scope and Stand of Carbon Capture Storage and Utilization, Case Studies in Chemical and Environmental Engineering 8: 100368, https://doi.org/10.1016/j.cscee.2023.100368.
DOI: https://doi.org/10.1016/j.cscee.2023.100368   Google Scholar

7. BOS J.F., DE HAAN J., SUKKEL W., SCHILS R.L., 2014, Energy Use and Greenhouse Gas Emissions in Organic and Conventional Farming Systems in the Netherlands, NJAS  Wageningen Journal of Life Sciences 68: 61-70, https://doi.org/10.1016/j.njas.2013.12.003.
DOI: https://doi.org/10.1016/j.njas.2013.12.003   Google Scholar

8. CHATAUT G., BHATTA B., JOSHI D., SUBEDI K., KAFLE K.,2023, Greenhouse gases emission from agricultural soil: A review, Journal of Agriculture and Food Research 11: 100533, https://doi.org/10.1016/j.jafr.2023.100533.
DOI: https://doi.org/10.1016/j.jafr.2023.100533   Google Scholar

9. CHATTERJEE S., SIMONOFF. S., 2013, Handbook of Regression Analysis Copyright, https://onlinelibrary.wiley.com/doi/book/10.1002/9781118532843/.
DOI: https://doi.org/10.1002/9781118532843   Google Scholar

10. CHIRIACÒ M. V., GROSSI G., CASTALDI S., VALENTINI R., 2017, The contribution to climate change of the organic versus conventional wheat farming: a case study on the carbon footprint of whole meal bread production in Italy, Journal of Cleaner Production 153: 309-319, https://doi.org/10.1016/j.jclepro.2017.03.111.
DOI: https://doi.org/10.1016/j.jclepro.2017.03.111   Google Scholar

11. COOPER J., BUTLER G., 2011, Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, which and without bio-energy options, NJAS  Wageningen Journal of Life Sciences 3-4(58): 185-192, http://dx.doi.org/10.1016/j.njas.2011.05.002.
DOI: https://doi.org/10.1016/j.njas.2011.05.002   Google Scholar

12. D’ODORICO P., RULLI M.C., DELL’ANGELO J., DAVIS K.F., 2017, New Frontiers of Land and Water Commodification: Socio-environmental Controversies of Large-scale Land Acquisitions, Land Degradation  Development 28: 2234-2244, https://doi.org/10.1002/ldr.2750.
DOI: https://doi.org/10.1002/ldr.2750   Google Scholar

13. EUROSTAT, 2022, Greenhouse gas emissions by source sector, https://ec.europa.eu/eurostat/databrowser/view/ENV_AIR_GGE/default/table?lang=en.
  Google Scholar

14. EUROSTAT, 2022, Organic crop area by agricultural production methods and crops, https://ec.europa.eu/eurostat/databrowser/view/ORG_CROPAR/default/table.
  Google Scholar

15. FILIPOVIĆ S., LIOR N., RADOVANOVIĆ M., 2022, The Green Deal  Just Transition and Sustainable Development Goals Nexus, Renewable and Sustainable Energy Reviews 168: 112759, https://doi.org/10.1016/j.rser.2022.112759.
DOI: https://doi.org/10.1016/j.rser.2022.112759   Google Scholar

16. FRITSCHE U.R., EBERLE U., WIEGMANN K., SCHMIDT K., 2007, Treibhausgasemissionen Durch Erzeugung Und Verarbeitung von Lebensmitteln, Arbeitspapier, Öko-Institut eV Darmstadt: Darmstadt, Germany, https://www.oeko.de/oekodoc/328/2007-011-de.pdf.
  Google Scholar

17. GOŁASA P., WYSOKIŃSKI M., BIEŃKOWSKA-GOŁASA W., GRADZIUK P., GOLONKO M., GRADZIUK B., SIEDLECKA A., GROMADA A., 2021, Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used, Energies 14(3): 3784, https://doi.org/10.3390/en14133784.
DOI: https://doi.org/10.3390/en14133784   Google Scholar

18. GOMIERO T., PAOLETTI M.G., PIMENTEL D., 2008, Energy and Environmental Issues in Organic and Conventional Agriculture, Critical Reviews in Plant Sciences 27: 239-254, https://doi.org/10.1080/07352680802225456.
DOI: https://doi.org/10.1080/07352680802225456   Google Scholar

19. GOMIERO T., PIMENTEL D., PAOLETTI M.G., 2011, Environmental Impact of Different Agricultural Management Practices: Conventional vs. Organic Agriculture, Critical Reviews in Plant Sciences 30: 95-124, https://doi.org/10.1080/07352689.2011.554355.
DOI: https://doi.org/10.1080/07352689.2011.554355   Google Scholar

20. HARTMANN J., WEST A.J., RENFORTH P., KÖHLER P., DE LA ROCHA C.L., WOLF-GLADROW D.A., DÜRR H.H., SCHEFFRAN J., 2013, Enhanced Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification, Reviews of Geophysics 51: 13-149, https://doi.org/10.1002/rog.20004.
DOI: https://doi.org/10.1002/rog.20004   Google Scholar

21. JEBARI A., PEREYRA-GODAY F., KUMAR A., COLLINS A., RIVERO M., MCAULIFFE G., 2024, Feasibility of mitigation measures for agricultural greenhouse gas emissions in the UK. A systematic review, Agronomy for Sustainable Development 2:(44), https://link.springer.com/article/10.1007/s13593-023-00938-0.
DOI: https://doi.org/10.1007/s13593-023-00938-0   Google Scholar

22. KHUDOYBERDIEV A., ULLAH I., KIM D., 2021, Optimization-assisted water supplement mechanism with energy efficiency in IoT based greenhouse, Journal of Intelligent  Fuzzy Systems 40: 10163-10182, https://doi.org/10.3233/JIFS-200618.
DOI: https://doi.org/10.3233/JIFS-200618   Google Scholar

23. KOZIUK V., HAYDA Y., DLUHOPOLSKYI O., KOZLOVSKYI, S., 2020, Ecological performance: ethnic fragmentation versus governance quality and sustainable development, Problemy Ekorozwoju/ Problems of Sustainable Development 15(1): 53-64.
DOI: https://doi.org/10.35784/pe.2020.1.06   Google Scholar

24. KOZLOVSKYI S. V., 2010, Economic policy as a basic element for the mechanism of managing development factors in contemporary economic system, Actual Problems of Economics 1(103): 13-20.
  Google Scholar

25. KOZLOVSKYI S., GRYNYUK R., BALTREMUS O., IVASHCHENKO A., 2017, The methods of state regulation of sustainable development of agrarian sector in Ukraine, Problems and Perspectives in Managemen, 15(2-2): 332-343.
DOI: https://doi.org/10.21511/ppm.15(2-2).2017.03   Google Scholar

26. KOZLOVSKYI S., GRYNYUK R., BAIDALA V., BURDIAK V., BAKUN Y., 2019, Economic security management of Ukraine in conditions of European integration, Montenegrin Journal of Economics 15(3): 137-153.
DOI: https://doi.org/10.14254/1800-5845/2019.15-3.10   Google Scholar

27. KOZLOVSKYI S. V. GERASYMENKO Y. V. KOZLOVSKYI V. O., 2010, Conceptual grounds for construction of support system for investment decision-making within agroindustrial complex of Ukraine, Actual Problems of Economics 5(107): 263-275.
  Google Scholar

28. KÜSTERMANN B.; HÜLSBERGEN K.-J., 2008, Emission of Climate-Relevant Gases in Organic and Conventional Cropping Systems, Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 16-20 June 2008, https://www.ishs.org/symposium/108.
  Google Scholar

29. MATTILA T., HAGELBERG E., SÖDERLUND S., JOONA J., 2022, How Farmers Approach Soil Carbon Sequestration? Lessons Learned from 105 Carbon-Farming Plans, Soil and Tillage Research 215: 105204, https://doi.org/10.1016/j.still.2021.105204.
DOI: https://doi.org/10.1016/j.still.2021.105204   Google Scholar

30. MARAVEAS C., KARAVAS C-S., LOUKATOS D., BARTZANAS T., ARVANITIS K., SYMEONAKI E., 2023, Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions, Agriculture 13(7): 1464, https://doi.org/10.3390/agriculture13071464.
DOI: https://doi.org/10.3390/agriculture13071464   Google Scholar

31. MCLEOD E., CHMURA G.L., BOUILLON S., SALM R., BJÖRK M., DUARTE C.M., LOVELOCK C.E., SCHLESINGER W.H., SILLIMAN B.R., 2011, A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2, Frontiers in ecology and the Environment 9: 552-560, https://doi.org/10.1890/110004.
DOI: https://doi.org/10.1890/110004   Google Scholar

32. NATURE & MORE, 2024, Sustainable Development Goals and the link to organic, https://www.natureandmore.com/en/sustainable-development-goals-and-the-link-to-organic.
  Google Scholar

33. ONDRASEK G., HORVATINEC J., KOVAČIĆ M.B., RELJIĆ M., VINCEKOVIĆ M., RATHOD S., BANDUMULA N., DHARAVATH R.; RASHID M.I., PANFILOVA O., 2023, Land Resources in Organic Agriculture: Trends and Challenges in the Twenty-First Century from Global to Croatian Contexts, Agronomy 13(6): 1544, https://doi.org/10.3390/agronomy13061544.
DOI: https://doi.org/10.3390/agronomy13061544   Google Scholar

34. OMOTOSO A., OMOTAVO A., 2024, The interplay between agriculture, greenhouse gases, and climate change in Sub-Saharan Africa, Regional Environments Change 1, https://link.springer.com/article/10.1007/s10113-023-02159-3.
DOI: https://doi.org/10.1007/s10113-023-02159-3   Google Scholar

35. PAUSTIAN K., LARSON E., KENT J., MARX E., SWAN A., 2019, Soil C Sequestration as a Biological Negative Emission Strategy, Frontiers in Climate, 1, https://collaborate.princeton.edu/en/publications/soil-c-sequestration-as-a-biological-negative-emission-strategy.
DOI: https://doi.org/10.3389/fclim.2019.00008   Google Scholar

36. POPULATION MATTERS, 2022, Our population has become so large that the Earth cannot cope, https://populationmatters.org/the-facts/?gad_source=1&gclid=EAIaIQobChMI3MSut4TYhgMVFEGRBR0EXwVZEAAYASAAEgIfwvD_BwE.
  Google Scholar

37. RAHMANN G., REZA ARDAKANI M., BÀRBERI P., BOEHM H., CANALI S., CHANDER M., DAVID W., DENGEL L., ERISMAN J.W., GALVIS-MARTINEZ A.C., 2017, Organic Agriculture 3.0. Is Innovation with Research, Organic Agriculture 7: 169-197, https://link.springer.com/article/10.1007/s13165-016-0171-5.
DOI: https://doi.org/10.1007/s13165-016-0171-5   Google Scholar

38. RITCHIE H., ROSADO, P., ROSER, M., 2022, How much, and what types of food, do countries produce across the world?, Agricultural Production, https://ourworldindata.org/agricultural-production.
  Google Scholar

39. STATISTA, 2024, Distribution of greenhouse gas emissions worldwide in 2020, by sector, 2024, https://www.statista.com/statistics/241756/proportion-of-energy-in-global-greenhouse-gas-emissions/.
  Google Scholar

40. SSSU (State Statistics Service of Ukraine, 2021, National accounts. Gross domestic product in actual prices, https://www.ukrstat.gov.ua/.
  Google Scholar

41. SELVAN T., PANMEI L., MURASING K., GULERIA V., RAMESH K., BHARDWAJ D., THAKUR C., KUMAR D., SHARMA P., UMEDSINH R., KAYALVIZHI D., DESHMUKH H., 2023, Circular economy in agriculture: unleashing the potential of integrated organic farming for food security and sustainable development, Agroecology and Ecosystem Services 7, https://doi.org/10.3389/fsufs.2023.1170380.
DOI: https://doi.org/10.3389/fsufs.2023.1170380   Google Scholar

42. SMITH P., POWLSON D.S., SMITH J.U., FALLOON P., COLEMAN K., 2000, Meeting Europe’s Climate Change Commitments: Quantitative Estimates of the Potential for Carbon Mitigation by Agriculture, Global Change. Biology 6: 525-539, https://doi.org/10.1046/j.1365-2486.2000.00331.x.
DOI: https://doi.org/10.1046/j.1365-2486.2000.00331.x   Google Scholar

43. SMITH L.G., KIRK G.J., JONES P.J., WILLIAMS A.G, 2019, The Greenhouse Gas Impacts of Converting Food Production in England and Wales to Organic Methods, Nature Communications 10: 4641, https://www.nature.com/articles/s41467-019-12622-7.
DOI: https://doi.org/10.1038/s41467-019-12622-7   Google Scholar

44. SQUALLI J., ADAMKIEWICZ G., 2018, Organic farming and greenhouse gas emissions: A longitudinal U.S. state-Level study, Journal of Cleaner Production 192(10): 30-42, https://doi.org/10.1016/j.jclepro.2018.04.160.
DOI: https://doi.org/10.1016/j.jclepro.2018.04.160   Google Scholar

45. SCIALABBA N.E.-H., MÜLLER-LINDENLAUF M., 2010, Organic Agriculture and Climate Change, Renewable Agriculture and Food Systems 25: 158-169.
DOI: https://doi.org/10.1017/S1742170510000116   Google Scholar

46. TSCHARNTKE T., GRASS I., WANGER T.C., WESTPHAL C., BATÁRY P., 2021, Beyond Organic Farming – Harnessing Biodiversity – Friendly Landscapes, Trends in Ecology & Evolution 36: 919-930, https://doi.org/10.1016/j.tree.2021.06.010.
DOI: https://doi.org/10.1016/j.tree.2021.06.010   Google Scholar

47. THE GUARDIAN, 2022, How has the world’s population grown since 1950?, https://www.theguardian.com/global-development/ng-interactive/2022/nov/14/how-has-the-worlds-population-grown-since-1950#:~:text=The%20world's%20population%20grew%20from,at%20about%2010.4%20billion%20people.
  Google Scholar

48. UNDP (United Nations Development Programme), 2024, What are the Sustainable Development Goals?, https://www.undp.org/africa/waca/i-am-sahel?gad_source=1&gclid=EAIaIQobChMI0L6n9J7VigMVEw-iAx3TLgG9EAAYASAAEgK_VfD_BwE.
  Google Scholar

49. U.S. DEPARTMENT OF AGRICULTURE, 2020, A Look at Agricultural Productivity Growth in the United States, 1948-2017, https://www.usda.gov/media/blog/2020/03/05/look-agricultural-productivity-growth-united-states-1948-2017.
  Google Scholar

50. VAN DER WERF H.M., KNUDSEN M.T., CEDERBERG C., 2020, Towards Better Representation of Organic Agriculture in Life Cycle Assessment, Nature Sustainability 3: 419-425, https://www.nature.com/articles/s41893-020-0489-6.
DOI: https://doi.org/10.1038/s41893-020-0489-6   Google Scholar

51. VERSCHUUREN J. Achieving Agricultural Greenhouse Gas Emission Reductions in the EU Post-2030: What Options Do We Have, 2022, Review of European, Comparative & International Environmental Law 31: 246-257, https://doi.org/10.1111/reel.12448.
DOI: https://doi.org/10.1111/reel.12448   Google Scholar

52. WOOD R., LENZEN M., DEY C., LUNDIE S. A., 2006, Comparative Study of Some Environmental Impacts of Conventional and Organic Farming in Australia, Agricultural Systems 89: 324=348, https://doi.org/10.1016/j.agsy.2005.09.007.
DOI: https://doi.org/10.1016/j.agsy.2005.09.007   Google Scholar

53. ZAMAN M., KLEINEIDAM K., BAKKEN L., BERENDT J., BRACKEN C., CAI Z., CHANG S., CLOUGH T., AWAR, K., DING W., DORSCH P., MARTINS M., ECKHARDT C., FIEDLER S., FROSCH T., GOOPY J., GORRES C., GUPTA A., HENJES S., MULLER C., 2021, Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques, Applications of Nuclear Techniques for GHGs, https://library.oapen.org/handle/20.500.12657/46805.
  Google Scholar

54. ZHOU M., ZHU B., WANG S., ZHU X., VEREECKEN H., BRUGGEMANN N., 2017, Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global metaanalysis, Global Change Biology 23(10), https://doi.org/10.1111/gcb.13648.
DOI: https://doi.org/10.1111/gcb.13648   Google Scholar

55. ZHOU J., LI B., XIA L., FAN C., XIONG Z., 2019, Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production, Journal of Cleaner Production 225: 984-994, https://doi.org/10.1016/j.jclepro.2019.03.191.
DOI: https://doi.org/10.1016/j.jclepro.2019.03.191   Google Scholar

56. ZIKELI S., REMBIAŁKOWSKA E., ZAŁECKA A., BADOWSKI M., 2013, Organic Farming and Organic Food Quality: Prospects and Limitations, Issues in Agroecology 85: 164, https://doi.org/10.1007/978-94-007-7454-4_3.
DOI: https://doi.org/10.1007/978-94-007-7454-4_3   Google Scholar

57. ZOOMERS A., VAN NOORLOOS F., OTSUKI K., STEEL G., VAN WESTEN G., 2017, The Rush for Land in an Urbanizing World: From Land Grabbing toward Developing Safe, Resilient, and Sustainable Cities and Landscapes, World Development 92: 242-252, https://doi.org/10.1016/j.worlddev.2016.11.016.
DOI: https://doi.org/10.1016/j.worlddev.2016.11.016   Google Scholar


Opublikowane
2025-01-10

Cited By / Share

Kozlovskyi, S., Zayukov, I., Kozlovskyi, V., Tregubov, O., Storchak, S., Mishchenko, V., & Lavrov, R. (2025). Związek pomiędzy ekspansją ekologicznych gruntów rolnych a emisją gazów cieplarnianych w Europie w kontekście wdrażania Celów zrównoważonego rozwoju. Problemy Ekorozwoju Problems of Sustainable Development, 20(1), 159–173. https://doi.org/10.35784/preko.6337

Autorzy

Serhii Kozlovskyi 
s.kozlovskyy@donnu.edu.ua
Vasyl’ Stus Donetsk National University Ukraina
https://orcid.org/0000-0003-0707-4996

Autorzy

Ivan Zayukov 

State University of Trade and Economics, Vinnytsia Institute of Trade and Economics Ukraina
https://orcid.org/0000-0002-7225-2827

Autorzy

Volodymyr Kozlovskyi 

Vinnytsia National Technical University Ukraina
https://orcid.org/0000-0002-0955-4347

Autorzy

Oleksandr Tregubov 

Vasyl’ Stus Donetsk National University Ukraina
https://orcid.org/0000-0002-0397-5570

Autorzy

Sviatoslav Storchak 

Vasyl’ Stus Donetsk National University Ukraina
https://orcid.org/0009-0009-2119-3351

Autorzy

Viktor Mishchenko 

Vasyl’ Stus Donetsk National University Ukraina
https://orcid.org/0009-0008-7802-3700

Autorzy

Ruslan Lavrov 

T.H. Shevchenko National University, Chernihiv Colehium Ukraina
https://orcid.org/0000-0002-9655-4467

Statystyki

Abstract views: 72
PDF downloads: 42


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.