Zrównoważony rozwój w kontekście energii geotermalnej: przykład Niemiec, Włoch, Turcji, Islandii i Francji
Ignas Mikalauskas
ignas.mikalauskas@ku.ltKlaipeda University (Litwa)
https://orcid.org/0000-0003-0879-0900
Gabija Stanislovaitytė
Vilnius University, Kaunas (Litwa)
https://orcid.org/0000-0002-2379-3088
Abstrakt
Energia geotermalna odgrywa ważną rolę w przejściu Europy na zrównoważone systemy energetyczne, znacząco przyczyniając się do zrównoważoności środowiskowej, ekonomicznej i społecznej. W niniejszym artykule przeprowadzono analizę porównawczą rozwoju energii geotermalnej w Niemczech, Włoszech, Turcji, Islandii i Francji. Podkreślono w nim ich unikalne podejścia, ramy polityczne i postęp technologiczny. Badanie wykazało, że energia geotermalna wzmacnia bezpieczeństwo energetyczne, zmniejsza emisję gazów cieplarnianych i promuje wzrost gospodarczy. Pomimo różnych poziomów rozwoju, każdy kraj wykazuje postęp w integrowaniu energii geotermalnej ze swoimi portfelami energii odnawialnej. Wyniki pokazują znaczenie silnego zarządzania, wsparcia politycznego i innowacji technologicznych w celu osiągnięcia zrównoważonego rozwoju poprzez rozwój i wykorzystanie energii geotermalnej.
Słowa kluczowe:
energia geotermalna, zrównoważony rozwój, polityka wobec energii odnawialnej, analiza porównawczaBibliografia
1. AGBI, 2024, Investors warm to Turkey’s geothermal sector, https://www.agbi.com/renewable-energy/2024/04/investors-warm-to-turkeys-geothermal-sector/.
Google Scholar
2. AL-QADAMI E. H. H., MUSTAFFA Z., AL-ATROUSH M. E., 2022, Evaluation of the pavement geothermal energy harvesting technologies towards sustainability and renewable energy, Energies 15(3): 1201.
DOI: https://doi.org/10.3390/en15031201
Google Scholar
3. ALSALEH M., ABDUL-RAHIM A. S., 2023, Rethinking the governance of geothermal power industry: The roadmap for sustainable development, Energy Exploration & Exploitation 41(6): 1821-1849.
DOI: https://doi.org/10.1177/01445987231185885
Google Scholar
4. ALSALEH M., YANG Z., CHEN T., WANG X., ABDUL-RAHIM A. S., MAHMOOD H., 2023, Moving toward environmental sustainability: Assessing the influence of geothermal power on carbon dioxide emissions, Renewable Ener-gy 202: 880-893.
DOI: https://doi.org/10.1016/j.renene.2022.11.060
Google Scholar
5. AVCI A. C., KAYGUSUZ O., AYGUSUZ, K., 2020, Geothermal energy for sustainable development, Journal of Engi-neering Research and Applied Science, 9(1): 1414-1426.
Google Scholar
6. BASHIR M. A., DENGFENG Z., SHAHZADI I., BASHIR M. F., 2023, Does geothermal energy and natural resources affect environmental sustainability? Evidence in the lens of sustainable development, Environmental Science and Pollution Research 30(8): 21769-21780.
DOI: https://doi.org/10.1007/s11356-022-23656-8
Google Scholar
7. CMS, 2023, CMS expert guide to renewable energy: Italy, CMS Law, https://cms.law/en/int/expert-guides/cms-expert-guide-to-renewable-energy/italy.
Google Scholar
8. DALLA LONGA F., NOGUEIRA L. P., LIMBERGER J., VAN WEES J. D., VAN DER ZWAAN B., 2020, Scenarios for geothermal energy deployment in Europe, Energy 206: 118060.
DOI: https://doi.org/10.1016/j.energy.2020.118060
Google Scholar
9. DOĞAN M., TEKBAŞ M., GURSOY S., 2022, The impact of wind and geothermal energy consumption on economic growth and financial development: evidence on selected countries, Geothermal Energy 10(1): 19.
DOI: https://doi.org/10.1186/s40517-022-00230-6
Google Scholar
10. DUMAS P., 2019, Policy and regulatory aspects of geothermal energy: A European perspective, Geothermal Energy and Society, eds Manzella A., Allansdottir A., Pellizzone P., Springer: 19-37.
DOI: https://doi.org/10.1007/978-3-319-78286-7_2
Google Scholar
11. EUROPEAN GEOTHERMAL ENERGY COUNCIL, 2020, The geothermal energy market grows exponentially, but needs the right market conditions to thrive, https://www.egec.org/the-geothermal-energy-market-grows-exponentially-but-needs-the-right-market-conditions-to-thrive/.
Google Scholar
12. EUROPEAN PARLIAMENT, 2023, Geothermal energy in the EU, https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/754566/EPRS_BRI(2023)754566_EN.pdf.
Google Scholar
13. EUROPEAN PARLIAMENT, 2024, European Parliament adopts own-initiative report on geothermal, https://eurogeologists.eu/european-parliament-adopts-own-initiative-report-on-geothermal/.
Google Scholar
14. GEOENVI, 2024, GEOENVI project, https://www.geoenvi.eu/.
Google Scholar
15. GIAMBASTIANI B. M. S., TINTIF., MENDRINOS D., MASTROCICCO M., 2014, Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO. POWER project, Energy Policy 65: 315-322.
DOI: https://doi.org/10.1016/j.enpol.2013.10.008
Google Scholar
16. HACKSTEIN F. V., MADLENER R., 2021, Sustainable operation of geothermal power plants: why economics matters, Geothermal Energy 9: 1-30.
DOI: https://doi.org/10.1186/s40517-021-00183-2
Google Scholar
17. INTERNATIONAL ENERGY AGENCY, 2010, Renewable energy essentials: Geothermal, https://www.iea.org/reports/renewable-energy-essentials-geothermal.
Google Scholar
18. INTERNATIONAL ENERGY AGENCY, 2021, Germany’s Renewables Energy Act (EEG), https://www.iea.org/policies/12392-germanys-renewables-energy-act.
Google Scholar
19. INTERNATIONAL RENEWABLE ENERGY AGENCY (IRENA), 2017, Geothermal power: Technology brief, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Aug/IRENA_Geothermal_Power_2017.pdf.
Google Scholar
20. JÓNSSON, Ö. D., KARLSSON, B. F., & SAEMUNDSSON, R. J., 2019, Taming the elements – The use of geothermal energy in Iceland, Geothermal Energy and Society, eds Manzella A., Allansdottir A., Pellizzone P., Springer: 145-158.
DOI: https://doi.org/10.1007/978-3-319-78286-7_10
Google Scholar
21. KARLSDOTTIR M. R., HEINONEN J., PALSSON H., PALSSON O. P., 2020, High-temperature geothermal utiliza-tion in the context of european energy policy – implications and limitations, Energies 13(12): 3187.
DOI: https://doi.org/10.3390/en13123187
Google Scholar
22. LIAO Z., 2023, Assessing Sustainable Impacts of Green Energy Projects for the Development of Renewable Energy Technologies: A Triple Bottom Line Approach, Processes, 11(8): 2228.
DOI: https://doi.org/10.3390/pr11082228
Google Scholar
23. LISE W., UYAR T. S., 2022, Towards more geothermal energy in Turkey, Renewable Energy Based Solutions, eds.Uyar T.S., Iawani N., Springer International Publishing, Cham: 363-374.
DOI: https://doi.org/10.1007/978-3-031-05125-8_15
Google Scholar
24. MEIRBEKOVA R., BONCIANI D., OLAFSSON D. I., KORUCAN A., DERIN-GÜRE P., HARCOUËT-MENOU V., BERO W., 2024, Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases – Belgium, Iceland, and Italy, Energies 17(16): 4134.
DOI: https://doi.org/10.3390/en17164134
Google Scholar
25. NATIONAL RENEWABLE ENERGY LABORATORY (NREL), 2024, Geothermal electricity production basics, https://www.nrel.gov/research/re-geo-elec-production.html.
Google Scholar
26. OZCELIK M., 2022, Environmental and social impacts of the increasing number of geothermal power plants (Büyük Menderes Graben – Turkey), Environmental Science and Pollution Research 29(11): 15526-15538.
DOI: https://doi.org/10.1007/s11356-021-16941-5
Google Scholar
27. OZER B., KIZILAY S., 2021, A research on sustainability of a geothermal energy resource in Kırklareli City, Internation-al Journal of Advanced Engineering and Pure Science 33(1): 11-17.
DOI: https://doi.org/10.7240/jeps.671234
Google Scholar
28. PROCESI M., CANTUCCI B., BUTTINELLI M., ARMEZZANI G., QUATTROCCHI F., BOSCHI E., 2013, Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Lati-um Region case study (Central Italy), Applied Energy 110: 104-131.
DOI: https://doi.org/10.1016/j.apenergy.2013.03.071
Google Scholar
29. RENOTH R., BUCHNER E., SCHMIEDER M., KEIM M., PLECHATY M., DREWS M., 2023, Social acceptance of geothermal technology on a global view: a systematic review, Energy, Sustainability and Society 13(1): 49.
DOI: https://doi.org/10.1186/s13705-023-00432-1
Google Scholar
30. SCHÜTZ F., HUENGES E., SPALEK A., BRUHN D., PÉREZ P., DE GREGORIO M., 2013, Geothermal Electricity: Potential for CO2 Mitigation, GEOELEC Project D, http://www.geoelec.eu/wp-content/uploads/2014/02/D4.6.pdf
Google Scholar
31. SHORTALL R., DAVIDSDOTTIR B., AXELSSON G., 2015, Geothermal energy for sustainable development: A re-view of sustainability impacts and assessment frameworks, Renewable and sustainable energy reviews 44: 391-406.
DOI: https://doi.org/10.1016/j.rser.2014.12.020
Google Scholar
32. SITZENFREI R., MÖDERL M., HELLBACH C., FLEISCHHACKER E., RAUCH W., 2011, Geothermal Energy in a Central European Perspective – Challenges and Opportunities, World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, eds Beighley E., Killgore M.W., American Society of Civil Engineers: 876-885, https://doi.org/10.1061/9780784411735.
DOI: https://doi.org/10.1061/41173(414)90
Google Scholar
33. SOLTANI M., KASHKOOLI F. M., SOURI M., RAFIEI B., JABARIFAR M., GHARALI K., NATHWANI J. S., 2021, Environmental, economic, and social impacts of geothermal energy systems, Renewable and Sustainable Energy Re-views 140: 110750.
DOI: https://doi.org/10.1016/j.rser.2021.110750
Google Scholar
34. STEFANSSON V., 2002, Investment cost for geothermal power plants, Geothermics 31(2): 263-272.
DOI: https://doi.org/10.1016/S0375-6505(01)00018-9
Google Scholar
35. THINK GEO ENERGY, 2021, Geothermal energy in France – What is needed for tapping its potential?, https://www.thinkgeoenergy.com/geothermal-energy-in-france-what-is-needed-for-tapping-its-potential/.
Google Scholar
36. THINK GEO ENERGY, 2024, European Commission approves Italy aid scheme for geothermal, renewables, https://www.thinkgeoenergy.com/european-commission-approves-italy-aid-scheme-for-geothermal-renewables/.
Google Scholar
37. TOMAROV G. V., SHIPKOV A. A., 2017, Modern geothermal power: Binary cycle geothermal power plants, Thermal Engineering 64(4): 243-250.
DOI: https://doi.org/10.1134/S0040601517040097
Google Scholar
38. TOTH A. N., FENERTY D. K., SZTERMEN O. L., 2024, Can Eastern Europe use new EU funding and legislation to help Europe achieve zero greenhouse gas emissions by 2050?, https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/Toth.pdf.
Google Scholar
39. WANG X., ALSALEH M., 2023, Determinants of geothermal power sustainability development: Do global competitive-ness markets matter?, Sustainability 15(4): 3747.
DOI: https://doi.org/10.3390/su15043747
Google Scholar
40. WORLD BANK., 2021, Geothermal energy in Turkey, World Bank Open Knowledge Repository, https://openknowledge.worldbank.org/entities/publication/22e105c7-550f-531d-8e2c-4011098ecf54/full.
Google Scholar
41. WORLD ECONOMIC FORUM, 2021, Earth’s energy will power Microsoft’s new sustainable campus, https://www.weforum.org/agenda/2021/09/geothermal-energy-microsoft-sustainable-campus/.
Google Scholar
42. YANG X., LIU Y., THRÄN D., BEZAMA A., WANG M., 2021, Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change, Energy, Sus-tainability and Society 11: 1-22.
DOI: https://doi.org/10.1186/s13705-021-00282-9
Google Scholar
Autorzy
Ignas Mikalauskasignas.mikalauskas@ku.lt
Klaipeda University Litwa
https://orcid.org/0000-0003-0879-0900
Autorzy
Gabija StanislovaitytėVilnius University, Kaunas Litwa
https://orcid.org/0000-0002-2379-3088
Statystyki
Abstract views: 25PDF downloads: 22