Zrównoważony rozwój w kontekście energii geotermalnej: przykład Niemiec, Włoch, Turcji, Islandii i Francji

Ignas Mikalauskas

ignas.mikalauskas@ku.lt
Klaipeda University (Litwa)
https://orcid.org/0000-0003-0879-0900

Gabija Stanislovaitytė


Vilnius University, Kaunas (Litwa)
https://orcid.org/0000-0002-2379-3088

Abstrakt

Energia geotermalna odgrywa ważną rolę w przejściu Europy na zrównoważone systemy energetyczne, znacząco przyczyniając się do zrównoważoności środowiskowej, ekonomicznej i społecznej. W niniejszym artykule przeprowadzono analizę porównawczą rozwoju energii geotermalnej w Niemczech, Włoszech, Turcji, Islandii i Francji. Podkreślono w nim ich unikalne podejścia, ramy polityczne i postęp technologiczny. Badanie wykazało, że energia geotermalna wzmacnia bezpieczeństwo energetyczne, zmniejsza emisję gazów cieplarnianych i promuje wzrost gospodarczy. Pomimo różnych poziomów rozwoju, każdy kraj wykazuje postęp w integrowaniu energii geotermalnej ze swoimi portfelami energii odnawialnej. Wyniki pokazują znaczenie silnego zarządzania, wsparcia politycznego i innowacji technologicznych w celu osiągnięcia zrównoważonego rozwoju poprzez rozwój i wykorzystanie energii geotermalnej.


Słowa kluczowe:

energia geotermalna, zrównoważony rozwój, polityka wobec energii odnawialnej, analiza porównawcza

1. AGBI, 2024, Investors warm to Turkey’s geothermal sector, https://www.agbi.com/renewable-energy/2024/04/investors-warm-to-turkeys-geothermal-sector/.
  Google Scholar

2. AL-QADAMI E. H. H., MUSTAFFA Z., AL-ATROUSH M. E., 2022, Evaluation of the pavement geothermal energy harvesting technologies towards sustainability and renewable energy, Energies 15(3): 1201.
DOI: https://doi.org/10.3390/en15031201   Google Scholar

3. ALSALEH M., ABDUL-RAHIM A. S., 2023, Rethinking the governance of geothermal power industry: The roadmap for sustainable development, Energy Exploration & Exploitation 41(6): 1821-1849.
DOI: https://doi.org/10.1177/01445987231185885   Google Scholar

4. ALSALEH M., YANG Z., CHEN T., WANG X., ABDUL-RAHIM A. S., MAHMOOD H., 2023, Moving toward environmental sustainability: Assessing the influence of geothermal power on carbon dioxide emissions, Renewable Ener-gy 202: 880-893.
DOI: https://doi.org/10.1016/j.renene.2022.11.060   Google Scholar

5. AVCI A. C., KAYGUSUZ O., AYGUSUZ, K., 2020, Geothermal energy for sustainable development, Journal of Engi-neering Research and Applied Science, 9(1): 1414-1426.
  Google Scholar

6. BASHIR M. A., DENGFENG Z., SHAHZADI I., BASHIR M. F., 2023, Does geothermal energy and natural resources affect environmental sustainability? Evidence in the lens of sustainable development, Environmental Science and Pollution Research 30(8): 21769-21780.
DOI: https://doi.org/10.1007/s11356-022-23656-8   Google Scholar

7. CMS, 2023, CMS expert guide to renewable energy: Italy, CMS Law, https://cms.law/en/int/expert-guides/cms-expert-guide-to-renewable-energy/italy.
  Google Scholar

8. DALLA LONGA F., NOGUEIRA L. P., LIMBERGER J., VAN WEES J. D., VAN DER ZWAAN B., 2020, Scenarios for geothermal energy deployment in Europe, Energy 206: 118060.
DOI: https://doi.org/10.1016/j.energy.2020.118060   Google Scholar

9. DOĞAN M., TEKBAŞ M., GURSOY S., 2022, The impact of wind and geothermal energy consumption on economic growth and financial development: evidence on selected countries, Geothermal Energy 10(1): 19.
DOI: https://doi.org/10.1186/s40517-022-00230-6   Google Scholar

10. DUMAS P., 2019, Policy and regulatory aspects of geothermal energy: A European perspective, Geothermal Energy and Society, eds Manzella A., Allansdottir A., Pellizzone P., Springer: 19-37.
DOI: https://doi.org/10.1007/978-3-319-78286-7_2   Google Scholar

11. EUROPEAN GEOTHERMAL ENERGY COUNCIL, 2020, The geothermal energy market grows exponentially, but needs the right market conditions to thrive, https://www.egec.org/the-geothermal-energy-market-grows-exponentially-but-needs-the-right-market-conditions-to-thrive/.
  Google Scholar

12. EUROPEAN PARLIAMENT, 2023, Geothermal energy in the EU, https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/754566/EPRS_BRI(2023)754566_EN.pdf.
  Google Scholar

13. EUROPEAN PARLIAMENT, 2024, European Parliament adopts own-initiative report on geothermal, https://eurogeologists.eu/european-parliament-adopts-own-initiative-report-on-geothermal/.
  Google Scholar

14. GEOENVI, 2024, GEOENVI project, https://www.geoenvi.eu/.
  Google Scholar

15. GIAMBASTIANI B. M. S., TINTIF., MENDRINOS D., MASTROCICCO M., 2014, Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO. POWER project, Energy Policy 65: 315-322.
DOI: https://doi.org/10.1016/j.enpol.2013.10.008   Google Scholar

16. HACKSTEIN F. V., MADLENER R., 2021, Sustainable operation of geothermal power plants: why economics matters, Geothermal Energy 9: 1-30.
DOI: https://doi.org/10.1186/s40517-021-00183-2   Google Scholar

17. INTERNATIONAL ENERGY AGENCY, 2010, Renewable energy essentials: Geothermal, https://www.iea.org/reports/renewable-energy-essentials-geothermal.
  Google Scholar

18. INTERNATIONAL ENERGY AGENCY, 2021, Germany’s Renewables Energy Act (EEG), https://www.iea.org/policies/12392-germanys-renewables-energy-act.
  Google Scholar

19. INTERNATIONAL RENEWABLE ENERGY AGENCY (IRENA), 2017, Geothermal power: Technology brief, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Aug/IRENA_Geothermal_Power_2017.pdf.
  Google Scholar

20. JÓNSSON, Ö. D., KARLSSON, B. F., & SAEMUNDSSON, R. J., 2019, Taming the elements – The use of geothermal energy in Iceland, Geothermal Energy and Society, eds Manzella A., Allansdottir A., Pellizzone P., Springer: 145-158.
DOI: https://doi.org/10.1007/978-3-319-78286-7_10   Google Scholar

21. KARLSDOTTIR M. R., HEINONEN J., PALSSON H., PALSSON O. P., 2020, High-temperature geothermal utiliza-tion in the context of european energy policy – implications and limitations, Energies 13(12): 3187.
DOI: https://doi.org/10.3390/en13123187   Google Scholar

22. LIAO Z., 2023, Assessing Sustainable Impacts of Green Energy Projects for the Development of Renewable Energy Technologies: A Triple Bottom Line Approach, Processes, 11(8): 2228.
DOI: https://doi.org/10.3390/pr11082228   Google Scholar

23. LISE W., UYAR T. S., 2022, Towards more geothermal energy in Turkey, Renewable Energy Based Solutions, eds.Uyar T.S., Iawani N., Springer International Publishing, Cham: 363-374.
DOI: https://doi.org/10.1007/978-3-031-05125-8_15   Google Scholar

24. MEIRBEKOVA R., BONCIANI D., OLAFSSON D. I., KORUCAN A., DERIN-GÜRE P., HARCOUËT-MENOU V., BERO W., 2024, Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases – Belgium, Iceland, and Italy, Energies 17(16): 4134.
DOI: https://doi.org/10.3390/en17164134   Google Scholar

25. NATIONAL RENEWABLE ENERGY LABORATORY (NREL), 2024, Geothermal electricity production basics, https://www.nrel.gov/research/re-geo-elec-production.html.
  Google Scholar

26. OZCELIK M., 2022, Environmental and social impacts of the increasing number of geothermal power plants (Büyük Menderes Graben – Turkey), Environmental Science and Pollution Research 29(11): 15526-15538.
DOI: https://doi.org/10.1007/s11356-021-16941-5   Google Scholar

27. OZER B., KIZILAY S., 2021, A research on sustainability of a geothermal energy resource in Kırklareli City, Internation-al Journal of Advanced Engineering and Pure Science 33(1): 11-17.
DOI: https://doi.org/10.7240/jeps.671234   Google Scholar

28. PROCESI M., CANTUCCI B., BUTTINELLI M., ARMEZZANI G., QUATTROCCHI F., BOSCHI E., 2013, Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Lati-um Region case study (Central Italy), Applied Energy 110: 104-131.
DOI: https://doi.org/10.1016/j.apenergy.2013.03.071   Google Scholar

29. RENOTH R., BUCHNER E., SCHMIEDER M., KEIM M., PLECHATY M., DREWS M., 2023, Social acceptance of geothermal technology on a global view: a systematic review, Energy, Sustainability and Society 13(1): 49.
DOI: https://doi.org/10.1186/s13705-023-00432-1   Google Scholar

30. SCHÜTZ F., HUENGES E., SPALEK A., BRUHN D., PÉREZ P., DE GREGORIO M., 2013, Geothermal Electricity: Potential for CO2 Mitigation, GEOELEC Project D, http://www.geoelec.eu/wp-content/uploads/2014/02/D4.6.pdf
  Google Scholar

31. SHORTALL R., DAVIDSDOTTIR B., AXELSSON G., 2015, Geothermal energy for sustainable development: A re-view of sustainability impacts and assessment frameworks, Renewable and sustainable energy reviews 44: 391-406.
DOI: https://doi.org/10.1016/j.rser.2014.12.020   Google Scholar

32. SITZENFREI R., MÖDERL M., HELLBACH C., FLEISCHHACKER E., RAUCH W., 2011, Geothermal Energy in a Central European Perspective – Challenges and Opportunities, World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, eds Beighley E., Killgore M.W., American Society of Civil Engineers: 876-885, https://doi.org/10.1061/9780784411735.
DOI: https://doi.org/10.1061/41173(414)90   Google Scholar

33. SOLTANI M., KASHKOOLI F. M., SOURI M., RAFIEI B., JABARIFAR M., GHARALI K., NATHWANI J. S., 2021, Environmental, economic, and social impacts of geothermal energy systems, Renewable and Sustainable Energy Re-views 140: 110750.
DOI: https://doi.org/10.1016/j.rser.2021.110750   Google Scholar

34. STEFANSSON V., 2002, Investment cost for geothermal power plants, Geothermics 31(2): 263-272.
DOI: https://doi.org/10.1016/S0375-6505(01)00018-9   Google Scholar

35. THINK GEO ENERGY, 2021, Geothermal energy in France – What is needed for tapping its potential?, https://www.thinkgeoenergy.com/geothermal-energy-in-france-what-is-needed-for-tapping-its-potential/.
  Google Scholar

36. THINK GEO ENERGY, 2024, European Commission approves Italy aid scheme for geothermal, renewables, https://www.thinkgeoenergy.com/european-commission-approves-italy-aid-scheme-for-geothermal-renewables/.
  Google Scholar

37. TOMAROV G. V., SHIPKOV A. A., 2017, Modern geothermal power: Binary cycle geothermal power plants, Thermal Engineering 64(4): 243-250.
DOI: https://doi.org/10.1134/S0040601517040097   Google Scholar

38. TOTH A. N., FENERTY D. K., SZTERMEN O. L., 2024, Can Eastern Europe use new EU funding and legislation to help Europe achieve zero greenhouse gas emissions by 2050?, https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/Toth.pdf.
  Google Scholar

39. WANG X., ALSALEH M., 2023, Determinants of geothermal power sustainability development: Do global competitive-ness markets matter?, Sustainability 15(4): 3747.
DOI: https://doi.org/10.3390/su15043747   Google Scholar

40. WORLD BANK., 2021, Geothermal energy in Turkey, World Bank Open Knowledge Repository, https://openknowledge.worldbank.org/entities/publication/22e105c7-550f-531d-8e2c-4011098ecf54/full.
  Google Scholar

41. WORLD ECONOMIC FORUM, 2021, Earth’s energy will power Microsoft’s new sustainable campus, https://www.weforum.org/agenda/2021/09/geothermal-energy-microsoft-sustainable-campus/.
  Google Scholar

42. YANG X., LIU Y., THRÄN D., BEZAMA A., WANG M., 2021, Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change, Energy, Sus-tainability and Society 11: 1-22.
DOI: https://doi.org/10.1186/s13705-021-00282-9   Google Scholar


Opublikowane
2025-01-10

Cited By / Share

Mikalauskas, I., & Stanislovaitytė, G. (2025). Zrównoważony rozwój w kontekście energii geotermalnej: przykład Niemiec, Włoch, Turcji, Islandii i Francji. Problemy Ekorozwoju Problems of Sustainable Development, 20(1), 236–244. https://doi.org/10.35784/preko.6615

Autorzy

Ignas Mikalauskas 
ignas.mikalauskas@ku.lt
Klaipeda University Litwa
https://orcid.org/0000-0003-0879-0900

Autorzy

Gabija Stanislovaitytė 

Vilnius University, Kaunas Litwa
https://orcid.org/0000-0002-2379-3088

Statystyki

Abstract views: 25
PDF downloads: 22


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.