Albers, A., Behrendt, M., Klingler, S., & Matros, K. (2016). Verifikation und Validierung im Produktentstehungsprozess [E-Book]. In M. Behrendt, S. Klingler & K. Matros (Eds.), Handbuch Produktentwicklung (pp. 541–557). Carl Hanser Verlag. https://doi.org/10.3139/9783446445819.019
DOI: https://doi.org/10.3139/9783446445819.019
Bauer, L., Bauer, M., & Kley, M. (2021). Modelbasierte Validierung der Prüfstandsdynamik zur Erprobung von Komponenten elektrifizierter Antriebsstränge mithilfe eines digitalen Zwillings. Stuttgarter Symposium für Produktentwicklung, SSP 2021, 105–116. https://doi.org/10.18419/opus-11478
Bauer, L., Beck, P., Stütz, L., & Kley, M. (2021). Enhanced efficiency prediction of an electrified off-highway vehicle transmission utilizing machine learning methods. Procedia Computer Science, 192, 417–426. https://doi.org/10.1016/j.procs.2021.08.043
DOI: https://doi.org/10.1016/j.procs.2021.08.043
Beine, M., & Rasche, R. (2018). Datenmanagement für das szenariobasierte Testen. ATZextra, 23(S4), 20–25. https://doi.org/10.1007/s35778-018-0024-9
DOI: https://doi.org/10.1007/s35778-018-0024-9
ÇElik, E., Gör, H., ÖZtürk, N., & Kurt, E. (2017). Application of artificial neural network to estimate power generation and efficiency of a new axial flux permanent magnet synchronous generator. International Journal of Hydrogen Energy, 42(28), 17692–17699. https://doi.org/10.1016/j.ijhydene.2017.01.168
DOI: https://doi.org/10.1016/j.ijhydene.2017.01.168
Dismon, H. (2017). Wir sind gefordert, Entwicklungen schnell und treffsicher umzusetzen. MTZextra, 22(S1), 8–11. https://doi.org/10.1007/s41490-017-0009-4
DOI: https://doi.org/10.1007/s41490-017-0009-4
Dohmen, H., Pfeiffer, K., & Schyr, C. (2009). Antriebsstrangprüftechnik: Vom stationären Komponententest zum fahrmanöverbasierten Testen (Die Bibliothek der Technik (BT)) (1. Aufl.). Süddeutscher Verlag onpact. German Environment Agency. (2020). Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2020.
Guggenmos, J., Rückert, J., Thalmair, S., & Wagner, M. (2018). Das Prüffeld der Antriebsentwicklung im Wandel. VPC – Simulation und Test 2015 (pp. 1–13). Springer. https://doi.org/10.1007/978-3-658-20736-6_1
DOI: https://doi.org/10.1007/978-3-658-20736-6_1
Hoekstra, A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6), 1412–1414. https://doi.org/10.1016/j.joule.2019.06.002
DOI: https://doi.org/10.1016/j.joule.2019.06.002
Isermann, R. (2007). Mechatronische Systeme. Springer.
Jazayeri, K., Jazayeri, M., & Uysal, S. (2016). Comparative Analysis of Levenberg-Marquardt and Bayesian Regularization Backpropagation Algorithms in Photovoltaic Power Estimation Using Artificial Neural Network. Advances in Data Mining. Applications and Theoretical Aspects (pp. 80–95). Springer. https://doi.org/10.1007/978-3-319-41561-1_7
DOI: https://doi.org/10.1007/978-3-319-41561-1_7
Khan, A., Mohammadi, M. H., Ghorbanian, V., & Lowther, D. (2020). Efficiency Map Prediction of Motor Drives Using Deep Learning. IEEE Transactions on Magnetics, 56(3), 1–4. https://doi.org/10.1109/tmag.2019.2957162
DOI: https://doi.org/10.1109/TMAG.2019.2957162
Li, Y. L., Kley, M., & Wang, S. J. (2014). Driveline Simulation of 2013 Formula Student Electric Racing Vehicle. Applied Mechanics and Materials, 541–542, 424–429. https://doi.org/10.4028/www.scientific.net/amm.541-542.424
DOI: https://doi.org/10.4028/www.scientific.net/AMM.541-542.424
Machrowska, A., Karpiński, R., Jonak, J., & Krakowski, P. (2020). Numericalprediction of the component-ratiodependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
Martini, E., Voß, H., Töpfer, S., & Isermann, R. (2003). Effiziente Motorapplikation mit lokal linearen neuronalen Netzen. MTZ - Motortechnische Zeitschrift, 64(5), 406–413. https://doi.org/10.1007/bf03226705
DOI: https://doi.org/10.1007/BF03226705
Paulweber, M., & Lebert, K. (2014). Mess- und Prüfstandstechnik: Antriebsstrangentwicklung Hybridisierung Elektrifizierung (Der Fahrzeugantrieb) (2014. Aufl.). Springer. https://doi.org/10.1007/978-3-658-04453-4
DOI: https://doi.org/10.1007/978-3-658-04453-4
Payal, A., Rai, C. S., & Reddy, B. V. R. (2013). Comparative analysis of Bayesian regularization and LevenbergMarquardt training algorithm for localization in wireless sensor network. 15th International Conference on Advanced Communications Technology (ICACT) (pp. 191–194). IEEE. https://ieeexplore.ieee.org/document/6488169
Ratov, D., & Lyfar, V. (2020). Modeling transmission mechanisms with determination of efficiency. Applied Computer Science, 16(1), 33–40. https://doi.org/10.23743/acs-2020-03
Stütz, J., Bauer, L., & Kley, M. (2019). Intelligente Lastkollektivoptimierung für Erprobungen von elektrischen und hybriden Antriebssträngen. Stuttgarter Symposium für Produktentwicklung SSP 2019 (pp. 93–102). Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. https://doi.org/10.18419/opus-10394
Stütz, L., Beck, P., & Kley, M. (2021). Wirkungsgraduntersuchungen am Antriebsstrang von Multifunktionsfahrzeugen unter Berücksichtigung von empirisch ermittelten Lastkollektiven. Stuttgarter Symposium für Produktentwicklung SSP 2021 (pp. 445–454). Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO. https://doi.org/10.18419/opus-11478
The MathWorks. (2020). Statistics and Machine Learning Toolbox User’s Guide. The MathWorks.
Willmerding, G., & Häckh, J. (2017). Echtzeitsimulation hochdynamischer Fahrzeugantriebe. ASIM-Treffen STS/GMMS 2017 (pp. 192–198). Ulm.
Yadav, R. N., & Yadava, V. (2017). Artificial neural network modelling of erosion-abrasion-based hybrid machining of aluminium-silicon carbide-boron carbide composite. International Journal of Engineering Systems Modelling and Simulation, 9(2), 63–77. https://doi.org/10.1504/ijesms.2017.083223
DOI: https://doi.org/10.1504/IJESMS.2017.10003531