Bai, X. (2018). Text classification based on LSTM and attention. 2018 Thirteenth International Conference on Digital Information Management (ICDIM) (pp. 29–32). IEEE. https://doi.org/10.1109/ICDIM.2018.8847061
DOI: https://doi.org/10.1109/ICDIM.2018.8847061
Chen, X., Wang, L., Wang, Y., Liu, Y., & Yang, H. (2016). A general framework for hardware trojan detection in digital circuits by statistical learning algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (vol. 36, no. 10, pp. 1633–1646). IEEE. https://doi.org/10.1109/TCAD.2016.2638442
DOI: https://doi.org/10.1109/TCAD.2016.2638442
Cui, Q., Sun, K., Wang, S., Zhang, L., & Li, D. (2016). Hardware trojan detection based on cluster analysis of mahalanobis distance. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 234–238). IEEE. https://doi.org/10.1109/IHMSC.2016.65
DOI: https://doi.org/10.1109/IHMSC.2016.65
Grus, J. (2015). Data Science from Scratch. 1005 Gravenstein Highway North. O’Reilly Media.
He, C., Hou, B., Wang, L., En, Y., & Xie, S. (2014). A novel hardware Trojan detection method based on side-channel analysis and PCA algorithm. 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS) (pp. 1043–1046). IEEE. https://doi.org/10.1109/ICRMS.2014.7107362
DOI: https://doi.org/10.1109/ICRMS.2014.7107362
Iwase, T., Nozaki, Y., Yoshikawa, M., & Kumaki, T. (2015). Detection technique for hardware Trojans using machine learning in frequency domain. 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE) (pp. 185–186). IEEE. https://doi.org/10.1109/GCCE.2015.7398569
DOI: https://doi.org/10.1109/GCCE.2015.7398569
Jahan, I., Sajal, S. Z., & Nygard, K. E. (2019). Prediction model using recurrent neural networks. 2019 IEEE International Conference on Electro Information Technology (EIT) (pp. 1–6) IEEE. https://doi.org/10.1109/EIT.2019.8834336
DOI: https://doi.org/10.1109/EIT.2019.8834336
Ni, L., Li, S., Chen, J., Wei, P., & Zhao, Z. (2014). The influence on sensitivity of hardware trojans detection by test vector. 2014 Communications Security Conference (CSC 2014) (pp. 1–6). IEEE. https://doi.org/10.1049/cp.2014.0756
DOI: https://doi.org/10.1049/cp.2014.0756
Paul, L. C., Suman, A. A., & Sultan, N. (2013). Methodological analysis of principal component analysis (PCA) method. International Journal of Computational Engineering & Management, 16(2), 32–38.
Tutorial Point. (2020). Retrieved October 8, 2021 from https://www.tutorialspoint.com
Salmani, H., Tehranipoor, M., & Plusquellic, J. (2011). A novel technique for improving hardware trojan detection and reducing trojan activation time. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 112–125. https://doi.org/10.1109/TVLSI.2010.2093547
DOI: https://doi.org/10.1109/TVLSI.2010.2093547
Shende, R., & Ambawade, D. D. (2016). A side channel based power analysis technique for hardware trojan detection using statistical learning approach. 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN) (pp. 1–4). IEEE. https://doi.org/10.1109/WOCN.2016.7759894
DOI: https://doi.org/10.1109/WOCN.2016.7759894
Wang, L.-W., & Luo, H.-W. (2011). A power analysis based approach to detect Trojan circuits. 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (pp. 380–384). IEEE. https://doi.org/10.1109/ICQR2MSE.2011.5976635
DOI: https://doi.org/10.1109/ICQR2MSE.2011.5976635
Zhang, L., Sun, K., Cui, Q., Wang, S., Li, X., & Di, J. (2016). Multi adaptive hardware Trojan detection method based on power characteristics template. 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 414–418). IEEE. https://doi.org/10.1109/CCIS.2016.7790294
DOI: https://doi.org/10.1109/CCIS.2016.7790294