DETECTION OF FILLERS IN THE SPEECH BY PEOPLE WHO STUTTER
Article Sidebar
Open full text
Issue Vol. 17 No. 4 (2021)
-
BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING
Lukas BAUER, Leon STÜTZ, Markus KLEY5-19
-
IMPLEMENTATION OF A HARDWARE TROJAN CHIP DETECTOR MODEL USING ARDUINO MICROCONTROLLER
Kadeejah ABDULSALAM, John ADEBISI, Victor DUROJAIYE20-33
-
ARTIFICIAL NEURAL NETWORK BASED DEMAND FORECASTING INTEGRATED WITH FEDERAL FUNDS RATE
Anupa ARACHCHIGE, Ranil SUGATHADASA, Oshadhi HERATH, Amila THIBBOTUWAWA34-44
-
DETECTION OF FILLERS IN THE SPEECH BY PEOPLE WHO STUTTER
Waldemar SUSZYŃSKI, Małgorzata CHARYTANOWICZ, Wojciech ROSA, Leopold KOCZAN, Rafał STĘGIERSKI45-54
-
CAREER TRACK PREDICTION USING DEEP LEARNING MODEL BASED ON DISCRETE SERIES OF QUANTITATIVE CLASSIFICATION
Rowell HERNANDEZ, Robert ATIENZA55-74
-
KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS
Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA75-83
-
CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT
Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA84-99
-
PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM
Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI100-109
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
Stuttering is a speech impediment that is a very complex disorder. It is difficult to diagnose and treat, and is of unknown initiation, despite the large number of studies in this field. Stuttering can take many forms and varies from person to person, and it can change under the influence of external factors. Diagnosing and treating speech disorders such as stuttering requires from a speech therapist, not only good profes-sional preparation, but also experience gained through research and practice in the field. The use of acoustic methods in combination with elements of artificial intelligence makes it possible to objectively assess the disorder, as well as to control the effects of treatment. The main aim of the study was to present an algorithm for automatic recognition of fillers disfluency in the statements of people who stutter. This is done on the basis of their parameterized features in the amplitude-frequency space. The work provides as well, exemplary results demonstrating their possibility and effectiveness. In order to verify and optimize the procedures, the statements of seven stutterers with duration of 2 to 4 minutes were selected. Over 70% efficiency and predictability of automatic detection of these disfluencies was achieved. The use of an automatic method in conjunction with therapy for a stuttering person can give us the opportunity to objectively assess the disorder, as well as to evaluate the progress of therapy.
Keywords:
References
Alharbia, S., Hasana, M., Simonsa, A. J. H., Brumfitt, S., & Green, P. (2020). Sequence labeling to detect stuttering events in read speech. Computer Speech & Language, 62, 101052. http://doi.org/10.1016/j.csl.2019.101052 DOI: https://doi.org/10.1016/j.csl.2019.101052
Bloodstein, O. (1995). A handbook on stuttering. Singular Publishing Group, Inc.
Czyżewski, A., Kaczmarek, A., & Kostek, B. (2003). Intelligent processing of stuttered speech. Journal of Intelligent Inform. Systems, 143–171. DOI: https://doi.org/10.1023/A:1024710532716
Howell, P., & Sackin, S. J. (1995). Automatic recognition of repetitions and prolongations in stuttered speech, Stuttering. Proceedings of the First World Congress on Fluency Disorders (pp. 372–374). Munich.
Howell, P., Sackin, S. J., Glenn, K., & Au-Yeung, J. (1997). Automatic stuttering frequency counts, Speech Motor Production and Fluency Disorders. Elsevier.
Kuniszyk-Jóźkowiak, W., Dzieńkowski, M., Smołka E., & Suszyński, W. (2003). Computer Diagnosis and Therapy of Stuttering. Structures – Waves – Human Health, VIII(2), 133–144.
Kuniszyk-Jóźkowiak, W., Smołka, E., & Suszyński, W. (2001). Acoustical characteristics alteration in persons who stutter resulting from therapy. Structures-Waves-Biomedical Engineering, X(2), 57–68.
Kuniszyk-Jóźkowiak, W., Smołka, E., Dzieńkowski, M., & Suszyński W. (2004). Computer therapy of speech non-fluency with automatic adaptation of individual person's difficulties. Structures-Waves-Human Health, VIII(2), 63–70.
Moore, B. C. J., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter banwidths and excitation patterns. The Journal of the Acoustical Society of America, 74, 750–753. DOI: https://doi.org/10.1121/1.389861
Moore, B. C. J., Peters, R. W., & Glasberg, B. R. (1990). Auditory filters shapes at low center frequencies. The Journal of the Acoustical Society of America, 88, 132–149. DOI: https://doi.org/10.1121/1.399960
Smołka, E., Kuniszyk-Jóźkowiak, W., Suszyński, W., & Dzieńkowski, M. (2003). Speech syllabic structure extraction with application of Kohonen network. Annales Informatica Universitatis Mariae CurieSkłodowska, AI 1,125–131.
Stromsta, C. (1993). The nature and management of stuttering. Proceedings Abstracta, Congressus XVIII (pp. 16–18). Societatis Phoniatricae Europaeae, Praga.
Suszyński, W., Kuniszyk-Józkowiak, W., Smolka, E., & Dzienkowski, M. (2003). Automatic Recognition of Nasals Prolongations in the Speech of Persons who Stutter. Structures-Waves-Human Health, XII(2), 175–184.
Suszyński, W., Kuniszyk-Jóźkowiak, W., Smołka, E., & Dzieńkowski, M. (2003). Prolongation detection with application of fuzzy logic. Annales Informatica Universitatis Mariae Curie-Skłodowska, AI 1, 133–140.
Suszyński, W., Kuniszyk-Jóźkowiak, W., Smołka, E., & Dzieńkowski, M. (2005). Speech disfluency detection with correlative method. Annales Informatica Universitatis Mariae Curie-Skłodowska, AI 3, 131–138.
Świetlicka, I., Kuniszyk-Jóźkowiak, W., & Smołka, E. (2013). Hierarchical ANN system for stuttering identification. Computer Speech & Language, 27(1), 228–242. https://doi.org/10.1016/j.csl.2012.05.003 DOI: https://doi.org/10.1016/j.csl.2012.05.003
Wingate, M. E. (2002). Foundation of stuttering. Academic Press. DOI: https://doi.org/10.1163/9789004487192
Wiśniewski, M, Kuniszyk-Jóźkowiak, W., Smołka, E., & Suszyński, W. (2010). Improved Approach to Automatic Detection of Speech Disorders Based the Hidden Markov Models Approach. Journal of Medical Informatics & Technologies, 15, 145–152. http://doi.org/10.1007/978-3-540-75175-5_56 DOI: https://doi.org/10.1007/978-3-540-75175-5_56
Wiśniewski, M., & Kuniszyk-Jóźkowiak, W. (2015). Automatic detection of stuttering in a speech. Journal of Medical Informatics & Technologies, 24, 31–37.
Article Details
Abstract views: 477
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
