Al-Awad, N. A., Abboud, I. K., & Al-Rawi, M. F. (2021). Genetic Algorithm-PID controller for model order reduction pantographcatenary system. Applied Computer Science, 17(2), 28-39. https://doi.org/10.23743/acs-2021-11
Alyamani, A., & Yasniy, O. (2020). Classification of EEG signal by methods of machine learning. Applied Computer Science, 16(4), 56-63. https://doi.org/10.23743/acs-2020-29
Biau, G., & Scornet, E. (2016). A Random Forest Guided Tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
DOI: https://doi.org/10.1007/s11749-016-0481-7
Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2
DOI: https://doi.org/10.1016/S0031-3203(96)00142-2
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882
DOI: https://doi.org/10.1145/1541880.1541882
Dewi, W., & Utomo, W. H. (2021). Plant classification based on leaf edges and leaf morphological veins using wavelet convolutional neural network. Applied Computer Science, 17(1), 81–89. https://doi.org/10.23743/acs-2021-08
Dhir, Vijay, Singh, A., Kumar, R., & Singh, G. (2010). Biometric Recognition: A Modern Era For Security. International Journal of Engineering Science and Technology, 2(8), 3364–80.
Edgar, T. W., & Manz, D. O. (2017). Research Methods for Cyber Security. Syngress.
Fischer, R. J., Halibozek, E. P., & Walters, D. C. (2019). Holistic Security Through the Application of Integrated Technology. Introduction to Security, 2019, 433–62. https://doi.org/10.1016/b978-0-12-805310-2.00017-2.
DOI: https://doi.org/10.1016/B978-0-12-805310-2.00017-2
Gaines, R. S., Lisowski. W., Press, S. J., & Shapiro, N. (1980). Authentication by Keystroke Timing. The Rand Corporation.
Gebrie, M. T., & Abie, H. (2017). Risk-Based Adaptive Authentication for Internet of Things in Smart Home EHealth. Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings (ECSA'17) (pp. 102–108). Association for Computing Machinery. https://doi.org/10.1145/3129790.3129801
DOI: https://doi.org/10.1145/3129790.3129801
Hwang, S.-S., Lee H., & Cho, S. (2009). Improving Authentication Accuracy Using Artificial Rhythms and Cues for Keystroke Dynamics-Based Authentication. Expert Systems with Applications, 36(7), 10649–56. https://doi.org/10.1016/j.eswa.2009.02.075
DOI: https://doi.org/10.1016/j.eswa.2009.02.075
Jain, A. K., Bolle, R. M., & Pankanti, S. (2006). Biometrics. Personal Identification in Networked Society. Springer.
Jain, A. K., Ross, A., & Prabhakar, S. (2004). An Introduction to Biometric Recognition. IEEE Trans. on Circuits and Systems for Video Technology, 14(1), 4-19.
DOI: https://doi.org/10.1109/TCSVT.2003.818349
Javaheri, S. H., Sepehri, M. M. & Teimourpour, B. (2013). Response Modeling in Direct Marketing. A Data Mining-Based Approach for Target Selection. Data Mining Applications with R (pp. 153-180). Elsevier Inc. https://doi.org/10.1016/B978-0-12-411511-8.00006-2
DOI: https://doi.org/10.1016/B978-0-12-411511-8.00006-2
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.
DOI: https://doi.org/10.1007/BF00337288
Markou, M., & Singh, S. (2003). Novelty detection: a review—part 1: statistical approaches. Signal Processing, 83(12), 2481–2497. https://doi.org/10.1016/j.sigpro.2003.07.018
DOI: https://doi.org/10.1016/j.sigpro.2003.07.018
Miljković, D. (2010). Review of novelty detection methods. The 33rd International Convention MIPRO (pp. 593-598). IEEE.
Monrose, F., Reiter, M. K., & Wetzel, S. (2002). Password Hardening Based on Keystroke Dynamics. International Journal of Information Security, 1(2), 69–83. https://doi.org/10.1007/s102070100006
DOI: https://doi.org/10.1007/s102070100006
Raschka, S. (2017). Python Machine Learning. Second edition. Packt Publishing Ltd.
Ru, W.G., & Eloff, J.H. (1997). Enhanced Password Authentication through Fuzzy Logic. IEEE Expert, 12, 38-45.
DOI: https://doi.org/10.1109/64.642960
Sridharan, M., Rani Arulanandam, D. C., Chinnasamy, R. K., Thimmanna, S., & Dhandapani, S. (2021). Recognition of font and tamil letter in images using deep learning. Applied Computer Science, 17(2), 90–99. https://doi.org/10.23743/acs-2021-15
Subasi, A. (2020). Practical Machine Learning for Data Analysis Using Python. Academic Press.
Umphress, D., & Williams, G. (1985). Identity verification through keyboard characteristics. International Journal of Man-Machine Studies, 23(3), 263–273. https://doi.org/10.1016/S0020-7373(85)80036-5
DOI: https://doi.org/10.1016/S0020-7373(85)80036-5
Vaibhaw, Sarraf, J., & Pattnaik, P.K. (2020). Brain–Computer Interfaces and Their Applications. An Industrial IoT Approach for Pharmaceutical Industry Growth, 2, 31-54. https://doi.org/10.1016/b978-0-12-821326-1.00002-4
DOI: https://doi.org/10.1016/B978-0-12-821326-1.00002-4
Williams, B., Halloin, C., Löbel, W., Finklea, F., Lipke, E., Zweigerdt, R., & Cremaschi, S. (2020). Data-Driven Model Development for Cardiomyocyte Production Experimental Failure Prediction. Computer Aided Chemical Engineering, 48, 1639-1644. https://doi.org/10.1016/B978-0-12-823377-1.50274-3
DOI: https://doi.org/10.1016/B978-0-12-823377-1.50274-3