Aparinov, A. A., & Setukha, A. V. (2009). On the application of mosaic-skeleton approximations of matrices for the acceleration of computations in the vortex method for the three-dimensional Euler equations. Differential Equations, 45, 1358. http://doi.org/10.1134/S0012266109090110
DOI: https://doi.org/10.1134/S0012266109090110
Cottet, G. H., & Koumoutsakos, P. D. (2000). Vortex Methods Theory and Practice. Cambridge University Press. Dynnikova, G. Ya. (2009). Fast technique for solving the N-body problem in flow simulation by vortex methods. Computational Mathematics and Mathematical Physics, 49, 1389–1396. http://doi.org/10.1134/S0965542509080090
DOI: https://doi.org/10.1134/S0965542509080090
Groen, D., Zwart, S. P., Ishiyama, T., & Makino, J. (2011). High Performance Gravitational N-body Simulations on a Planet-wide Distributed Supercomputer. Computational Science & Discovery, 4(1), 015001. http://doi.org/10.1088/1749-4699/4/1/015001
DOI: https://doi.org/10.1088/1749-4699/4/1/015001
Hockney, R. W., & Eastwood, J. W. (1988). Computer Simulation Using Particles. Taylor & Francis Group.
DOI: https://doi.org/10.1201/9781439822050
Huang, M. J., Su, H. X., & Chen, L. Ch. (2009). A fast resurrected core-spreading vortex method with no-slip boundary conditions. Journal of Computational Physics, 228(6), 1916–1931. https://doi.org/10.1016/j.jcp.2008.11.026
DOI: https://doi.org/10.1016/j.jcp.2008.11.026
Incardona, P., Leo, A., Zaluzhny, Y., Ramaswamy, R., & Sbalzarini, I. F. (2019). OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers. Computer Physics Communications, 241, 155–177. https://doi.org/10.1016/j.cpc.2019.03.007
DOI: https://doi.org/10.1016/j.cpc.2019.03.007
Kuzmina, K., Marchevsky, I., & Moreva, V. (2015). Parallel Implementation of Vortex Element Method on CPUs and GPUs. Procedia Computer Science, 66, 73–82. https://doi.org/10.1016/j.procs.2015.11.010
DOI: https://doi.org/10.1016/j.procs.2015.11.010
Lewis, R. I. (1991). Vortex Element Methods for Fluid Dynamics of Engineering Systems. Cambridge University Press.
DOI: https://doi.org/10.1017/CBO9780511529542
Nowicki, T. (2007). Algorytm równoległy dla problemu n-ciał (Unpublished master thesis). Lublin University of Technology, Lublin. https://github.com/TomekNowicki/vorsym/blob/main/nowicki_n-body.pdf
Nowicki, T. (2012). Wpływ sposobu realizacji warunków brzegowych w metodzie wirów dyskretnych na odpowiedź aeroelastyczną pomostów. Politechnika Lubelska.
Nowicki, T. (2015). The Discrete Vortex Method for estimating how surface roughness affects aerodynamic drag acting on a long cylinder exposed to wind. Technical Transactions, Civil Engineering, 2-B(12), 127–144. https://doi.org/10.4467/2353737XCT.15.129.4166
Ricciardi, T. R., Wolf, W. R., & Bimbato, A. M. (2017). A fast algorithm for simulation of periodic flows using discrete vortex particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 4555–4570. http://doi.org/10.1007/s40430-017-0902-x
DOI: https://doi.org/10.1007/s40430-017-0902-x
Ricciardi, T., R., Bimbato, A. M., Wolf, W., R., Idelsohn, S. R., Sonzogni, V., Coutinho, A., Cruchaga, M., Lew, A., & Cerrolaza, M. (2015). Numerical simulation of vortex interactions using a fast multipole discrete particle method. Proceedings Of The 1st Pan-american Congress On Computational Mechanics And Xi Argentine Congress On Computational Mechanics (pp. 1065–1076). Barcelona: Int Center Numerical Methods Engineering.