A NOVEL PROFILE’S SELECTION ALGORITHM USING AI
Article Sidebar
Open full text
Issue Vol. 16 No. 1 (2020)
-
A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA
Saheed A. ADEWUYI, Segun AINA, Adeniran I. OLUWARANTI5-17
-
A NOVEL PROFILE’S SELECTION ALGORITHM USING AI
Mario BELLO, Alejandra LUNA, Edmondo BONILLA, Crispin HERNANDEZ, Blanca PEDROZA, Alberto PORTILLA18-32
-
MODELING TRANSMISSION MECHANISMS WITH DETERMINATION OF EFFICIENCY
Denis RATOV, Vladimir LYFAR33-40
-
UNSUPERVISED DYNAMIC TOPIC MODEL FOR EXTRACTING ADVERSE DRUG REACTION FROM HEALTH FORUMS
Behnaz ESLAMI, Mehdi HABIBZADEH MOTLAGH, Zahra REZAEI, Mohammad ESLAMI, Mohammad AMIN AMINI41-59
-
FOOD DELIVERY BASED ON PSO ALGORITHM AND GOOGLE MAPS
Sergio SOTO, Edmondo BONILLA, Alberto PORTILLA, Jose C. HERNANDEZ, Oscar ATRIANO, Perfecto M. QUINTERO60-72
-
SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE
Mohanad ABDULHAMID, Njagi KINYUA73-84
-
INFORMATION MODEL OF SYSTEM OF SUPPORT OF DECISION MAKING DURING MANAGEMENT OF IT COMPANIES
Yehor TATARCHENKO, Volodymyr LYFAR, Halyna TATARCHENKO85-94
-
REMOTE HEALTH MONITORING: FALL DETECTION
Mohanad ABDULHAMID, Deng PETER95-102
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
aportilla@smartsoftamerica.com.mx
Abstract
In order to better understand the job requirements, recruitment processes, and hiring processes it is needed to know the people skills. For a recruiter this entails analyzing and comparing the curricula of each available candidate and determining the most appropriate candidate that the activities that are required by the position. This process must be carried in the shortest length of time possible. In this paper, an algorithm is proposed to identify those candidates, either workers or college graduates.
Keywords:
References
Baccour, L., Alimi, A., & John, R. (2014). Some notes on fuzzy similarity measures and application to classification of shapes, recognition of arabic sentences and mosaic. IAENG International Journal of Computer Science, 41(2), 81–90.
Behara, K., Bhaskar, A., & Chung, E. (2018). Levenshtein distance for the structural comparison of od matrices. 40th Australasian Transport Research Forum (ATRF). Darwin.
Bisandu, D., Prasad, R., & Liman, M. (2018). Clustering news articles using efficient similarity measure and n-grams. International Journal of Knowledge Engineering and Data Mining, 5(4), 333–348. https://doi.org/10.1504/IJKEDM.2018.095525 DOI: https://doi.org/10.1504/IJKEDM.2018.095525
Cheatham, M., & Hitzler, P. (2013). String similarity metrics for ontology alignment. International Semantic Web Conference, 8219, 294–309. https://doi.org/10.1007/978-3-642-41338-419 DOI: https://doi.org/10.1007/978-3-642-41338-4_19
Deng, Y., Lei, H., Li, X., & Lin, Y. (2018). An improved deep neural network model for job matching. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), 106-112. https://doi.org/10.1109/icaibd.2018.8396176 DOI: https://doi.org/10.1109/ICAIBD.2018.8396176
Derous, E., & Fruyt, F. D. (2016). Developments in Recruitment and Selection Research. International Journal of Selection and Assessment, 24(1). https://doi.org/10.1111/ijsa.12123 DOI: https://doi.org/10.1111/ijsa.12123
Dice, L. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302. https://doi.org/10.2307/1932409 DOI: https://doi.org/10.2307/1932409
Esch, P., & Mente, M. (2018). Marketing video-enabled social media as part of your e-recruitment strategy: Stop trying to be trendy. Journal of Retailing and Consumer Services, 44, 266–273. https://doi.org/10.1016/j.jretconser.2018.06.016 DOI: https://doi.org/10.1016/j.jretconser.2018.06.016
Esch, P., Black, J., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215-222. https://doi.org/10.1016/j.chb.2018.09.009 DOI: https://doi.org/10.1016/j.chb.2018.09.009
Gali, N., Mariescu-Istodor, R., Hostettler, D., & Fränti, P. (2019). Framework for syntactic string similarity measures. Expert Systems with Applications, 129, 169–185. https://doi.org/10.1016/j.eswa.2019.03.048 DOI: https://doi.org/10.1016/j.eswa.2019.03.048
González-Eras, A., & Aguilar, J. (2019). Determination of Professional Competencies Using an Alignment Algorithm of Academic Profiles and Job Advertisements Based on Competence Thesauri and Similarity Measures. International Journal of Artificial Intelligence in Education, 29(4), 536–567. DOI: https://doi.org/10.1007/s40593-019-00185-z
Guo, X., Jerbi, H., & O’Mahony, M. (2014). An analysis framework for content-based job recommendation. In International Conference on Case-Based Reasoning 2014. Cork, Ireland.
Huang, A. (2008). Similarity measures for text document clustering. New Zealand Computer Science Research Student Conference, 6, 49–56.
I ́m Talenty (n.d.). Intelligent platform for entailment student. Retrieved January 10, 2019 from https://imtalenty.com/login.xhtml
Kerzendorf, W. (2019). Knowledge discovery through text-based similarity searches for astronomy literature. Journal of Astrophysics and Astronomy, 40, 1–7. https://doi.org/10.1007/s12036-019-9590-5 DOI: https://doi.org/10.1007/s12036-019-9590-5
Kessler, R., Béchet, N., Roche, M., Torres-Moreno, J., & El-Bèze, M. (2012). A hybrid approach to managing job offers and candidates. Information Processing and Management, 48, 1124–1135. https://doi.org/10.1016/j.ipm.2012.03.002 DOI: https://doi.org/10.1016/j.ipm.2012.03.002
Kondrak, G. (2005). N-gram similarity and distance. String Processing and Information Retrieval, 12, 115–126. doi:10.1007/11575832_13 DOI: https://doi.org/10.1007/11575832_13
Liu, Y., Qin, K., Rao, C., & Mahamadu, M. (2017). Object-parameter approaches to predicting unknown data in an incomplete fuzzy soft set. International Journal of Applied Mathematics and Computer Science, 27(1), 157–167. https://doi.org/10.1515/amcs-2017-0011 DOI: https://doi.org/10.1515/amcs-2017-0011
Pappis, C., & Karacapilidis, N. (1993). A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems, 56(2), 171–174. https://doi.org/10.1016/0165-0114(93)90141-4 DOI: https://doi.org/10.1016/0165-0114(93)90141-4
Porter, M. (1980). An algorithm for suffix stripping. Program, 40, 211–218. DOI: https://doi.org/10.1108/00330330610681286
Sandhya, N., Lalitha, Y., Govardhan, A., & Anuradha, K. (2008). Analysis of similarity measures for text clustering. Computer Science Journals, 2(4), 1–10.
Sedgewick, R., & Wayne, K. (2011). Algorithms, 4th Edition (pp. 244–336). Princenton.
Shakya, A., & Paudel, S. (2019). Job-Candidate Matching using ESCO Ontology. Journal of the Institute of Engineering, 15(1), 1–13. DOI: https://doi.org/10.3126/jie.v15i1.27699
Article Details
Abstract views: 353
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
