GRAPH-BASED FOG COMPUTING NETWORK MODEL

Ihor PYSMENNYI

ihor.pismennyy@gmail.com
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)

Anatolii PETRENKO


National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)

Roman KYSLYI


National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)

Abstract

IoT networks generate numerous amounts of data that is then transferred to the cloud for processing. Transferring data cleansing and parts of calculations towards these edge-level networks improves system’s, latency, energy consumption, network bandwidth and computational resources utilization, fault tolerance and thus operational costs. On the other hand, these fog nodes are resource-constrained, have extremely distributed and heterogeneous nature, lack horizontal scalability, and, thus, the vanilla SOA approach is not applicable to them. Utilization of Software Defined Network (SDN) with task distribution capabilities advocated in this paper addresses these issues. Suggested framework may utilize various routing and data distribution algorithms allowing to build flexible system most relevant for particular use-case. Advocated architecture was evaluated in agent-based simulation environment and proved its’ feasibility and performance gains compared to conventional event-stream approach.


Keywords:

software-defined networks, fog computing, smart sensors, IoT

Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013). Traffic engineering in software defined networks. 2013 Proceedings IEEE INFOCOM, 2211–2219. https://doi.org/10.1109/INFCOM.2013.6567024
DOI: https://doi.org/10.1109/INFCOM.2013.6567024   Google Scholar

Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of Medical Systems, 36(1), 93–101. https://doi.org/10.1007/s10916-010-9449-4
DOI: https://doi.org/10.1007/s10916-010-9449-4   Google Scholar

Castro-Jul, F., Conan, D., Chabridon, S., Díaz Redondo, R. P., Fernández Vilas, A., & Taconet, C. (2017). Combining Fog Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification. Lecture Notes in Computer Science, 10586, 27–33. https://doi.org/10.1007/978-3-319-67585-5_3
DOI: https://doi.org/10.1007/978-3-319-67585-5_3   Google Scholar

Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes-Present state and future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55–81. https://doi.org/10.1016/j.cmpb.2008.02.001
DOI: https://doi.org/10.1016/j.cmpb.2008.02.001   Google Scholar

Dias, L. M. S., Vieira, A. A. C., Pereira, G. A. B., & Oliveira, J. A. (2016). Discrete simulation software ranking — A top list of the worldwide most popular and used tools. 2016 Winter Simulation Conference (WSC), 1060–1071. https://doi.org/10.1109/WSC.2016.7822165
DOI: https://doi.org/10.1109/WSC.2016.7822165   Google Scholar

Diogenes, Y. (2017). Internet Of Things Security Architecture. Retrieved December 31, 2018, from Microsoft website: https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-securityarchitecture Gope, P., & Hwang, T. (2016). BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sensors Journal, 16(5), 1368–1376. https://doi.org/10.1109/JSEN.2015.2502401
DOI: https://doi.org/10.1109/JSEN.2015.2502401   Google Scholar

Hussain, R., & Zeadally, S. (2019). Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Communications Surveys and Tutorials, 21(2), 1275–1313. https://doi.org/10.1109/COMST.2018.2869360
DOI: https://doi.org/10.1109/COMST.2018.2869360   Google Scholar

IEEE Communications Society. (2018). IEEE Standard for Adoption of OpenFog Reference Architecture for Fog Computing. In The Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/IEEESTD.2018.8423800
DOI: https://doi.org/10.1109/IEEESTD.2018.8423800   Google Scholar

Joshi, N. (n.d.). Fog vs Edge vs Mist computing. Which one is the most suitable for your business? Retrieved June 21, 2020, from https://www.allerin.com/blog/fog-vs-edge-vs-mistcomputing-which-one-is-the-most-suitable-for-your-business
  Google Scholar

Kharchenko, K., & Beznosyk, O. (2018). The input file format for IoT management systems based on a data flow virtual machine. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT) (139–142). IEEE. https://doi.org/10.1109/DESSERT.2018.8409115
DOI: https://doi.org/10.1109/DESSERT.2018.8409115   Google Scholar

Kirkpatrick, K. (2013). Software-defined networking. Communications of the ACM, 56(9), 16–19. https://doi.org/10.1145/2500468.2500473
DOI: https://doi.org/10.1145/2500468.2500473   Google Scholar

Klügl, F., & Bazzan, A. L. C. (2012). Agent-Based Modeling and Simulation. AI Magazine, 33(3), 29. https://doi.org/10.1609/aimag.v33i3.2425
DOI: https://doi.org/10.1609/aimag.v33i3.2425   Google Scholar

Laghari, S., & Niazi, M. A. (2016). Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach. PLOS ONE, 11(1), e0146760. https://doi.org/10.1371/journal.pone.0146760
DOI: https://doi.org/10.1371/journal.pone.0146760   Google Scholar

Lewis, P. R., Platzner, M., Rinner, B., Tørresen, J., & Yao, X. (2016). Self-aware Computing Systems. In P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, & X. Yao (Eds.), Natural Computing Series. https://doi.org/10.1007/978-3-319-39675-0
DOI: https://doi.org/10.1007/978-3-319-39675-0   Google Scholar

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems (1st ed.). Manning Publication.
  Google Scholar

Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal of Network and Computer Applications, 119(June), 42–56. https://doi.org/10.1016/j.jnca.2018.06.016
DOI: https://doi.org/10.1016/j.jnca.2018.06.016   Google Scholar

Multimethod Simulation Modeling for Business Applications – AnyLogic Simulation Software. (n.d.). Retrieved October 5, 2020, from https://www.anylogic.com/resources/whitepapers/multimethod-simulation-modeling-for-business-applications/
  Google Scholar

Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018a). Designing security of personal data in distributed health care platform. Technology Audit and …, 2(42). https://doi.org/10.15587/2312-8372.2018.141299
DOI: https://doi.org/10.15587/2312-8372.2018.141299   Google Scholar

Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018b). Detection of human respiration patterns using deep convolution neural networks. Eastern-European Journal of Enterprise Technologies, 4(9(94)), 6–13. https://doi.org/10.15587/1729-4061.2018.139997
DOI: https://doi.org/10.15587/1729-4061.2018.139997   Google Scholar

Pysmennyi, I., Kyslyi, R., & Petrenko, A. (2019). Edge computing in multi-scope service-oriented mobile healthcare systems. System Research and Information Technologies, (1), 118–127. https://doi.org/10.20535/SRIT.2308-8893.2019.1.09
DOI: https://doi.org/10.20535/SRIT.2308-8893.2019.1.09   Google Scholar

Rahmani, A. M., Liljeberg, P., Preden, J.-S., & Jantsch, A. (2018). Fog Computing in the Internet of Things. Springer. https://doi.org/10.1007/978-3-319-57639-8
DOI: https://doi.org/10.1007/978-3-319-57639-8   Google Scholar

Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University - Computer and Information Sciences, 30(3), 291–319. https://doi.org/10.1016/j.jksuci.2016.10.003
DOI: https://doi.org/10.1016/j.jksuci.2016.10.003   Google Scholar

Oma, R., Nakamura, S., & Duolikun, D. (2019). A fault-tolerant tree-based fog computing model. International Journal of Web and Grid Services, 15(3), 219. https://doi.org/10.1504/IJWGS.2019.10022420
DOI: https://doi.org/10.1504/IJWGS.2019.10022420   Google Scholar

Satyanarayanan, M. (2017). Edge Computing. Computer, 50(10), 36–38. https://doi.org/10.1109/MC.2017.3641639
DOI: https://doi.org/10.1109/MC.2017.3641639   Google Scholar

Sedgewick, R., & Wayne, K. (2011). Algorithms. In Foreign Affairs (4th ed.). Westford: AddisonWesley.
  Google Scholar

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 Spot Instances – Amazon Elastic Compute Cloud. (n.d.). Retrieved July 7, 2020, from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
DOI: https://doi.org/10.1109/JIOT.2016.2579198   Google Scholar

Stojmenovic, I., & Wen, S. (2014). The Fog Computing Paradigm: Scenarios and Security Issues. 2, 1–8. https://doi.org/10.15439/2014F503
DOI: https://doi.org/10.15439/2014F503   Google Scholar

World Health Organization. (2010). Telemedicine Opportunities and developments in Member States. In World Health Organization (Vol. 2).
  Google Scholar

Xiao, Y., & Zhu, Ch. (2017). Vehicular fog computing: Vision and challenges. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 6–9. https://doi.org/10.1109/PERCOMW.2017.7917508
DOI: https://doi.org/10.1109/PERCOMW.2017.7917508   Google Scholar

Yogi, M. K., Sekhar, K. C., & Kumar, G. V. (2017). Mist Computing: Principles, Trends and Future Direction. International Journal of Computer Science and Engineering, 4(7), 19–21. https://doi.org/10.14445/23488387/IJCSE-V4I7P104
DOI: https://doi.org/10.14445/23488387/IJCSE-V4I7P104   Google Scholar

Download


Published
2020-12-30

Cited by

PYSMENNYI, I. ., PETRENKO, A. ., & KYSLYI, R. . (2020). GRAPH-BASED FOG COMPUTING NETWORK MODEL. Applied Computer Science, 16(4), 5–20. https://doi.org/10.23743/acs-2020-25

Authors

Ihor PYSMENNYI 
ihor.pismennyy@gmail.com
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine

Authors

Anatolii PETRENKO 

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine

Authors

Roman KYSLYI 

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine

Statistics

Abstract views: 291
PDF downloads: 29


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.