GRAPH-BASED FOG COMPUTING NETWORK MODEL
Ihor PYSMENNYI
ihor.pismennyy@gmail.comNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)
Anatolii PETRENKO
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)
Roman KYSLYI
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv (Ukraine)
Abstract
IoT networks generate numerous amounts of data that is then transferred to the cloud for processing. Transferring data cleansing and parts of calculations towards these edge-level networks improves system’s, latency, energy consumption, network bandwidth and computational resources utilization, fault tolerance and thus operational costs. On the other hand, these fog nodes are resource-constrained, have extremely distributed and heterogeneous nature, lack horizontal scalability, and, thus, the vanilla SOA approach is not applicable to them. Utilization of Software Defined Network (SDN) with task distribution capabilities advocated in this paper addresses these issues. Suggested framework may utilize various routing and data distribution algorithms allowing to build flexible system most relevant for particular use-case. Advocated architecture was evaluated in agent-based simulation environment and proved its’ feasibility and performance gains compared to conventional event-stream approach.
Keywords:
software-defined networks, fog computing, smart sensors, IoTReferences
Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013). Traffic engineering in software defined networks. 2013 Proceedings IEEE INFOCOM, 2211–2219. https://doi.org/10.1109/INFCOM.2013.6567024
DOI: https://doi.org/10.1109/INFCOM.2013.6567024
Google Scholar
Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of Medical Systems, 36(1), 93–101. https://doi.org/10.1007/s10916-010-9449-4
DOI: https://doi.org/10.1007/s10916-010-9449-4
Google Scholar
Castro-Jul, F., Conan, D., Chabridon, S., Díaz Redondo, R. P., Fernández Vilas, A., & Taconet, C. (2017). Combining Fog Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification. Lecture Notes in Computer Science, 10586, 27–33. https://doi.org/10.1007/978-3-319-67585-5_3
DOI: https://doi.org/10.1007/978-3-319-67585-5_3
Google Scholar
Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes-Present state and future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55–81. https://doi.org/10.1016/j.cmpb.2008.02.001
DOI: https://doi.org/10.1016/j.cmpb.2008.02.001
Google Scholar
Dias, L. M. S., Vieira, A. A. C., Pereira, G. A. B., & Oliveira, J. A. (2016). Discrete simulation software ranking — A top list of the worldwide most popular and used tools. 2016 Winter Simulation Conference (WSC), 1060–1071. https://doi.org/10.1109/WSC.2016.7822165
DOI: https://doi.org/10.1109/WSC.2016.7822165
Google Scholar
Diogenes, Y. (2017). Internet Of Things Security Architecture. Retrieved December 31, 2018, from Microsoft website: https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-securityarchitecture Gope, P., & Hwang, T. (2016). BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sensors Journal, 16(5), 1368–1376. https://doi.org/10.1109/JSEN.2015.2502401
DOI: https://doi.org/10.1109/JSEN.2015.2502401
Google Scholar
Hussain, R., & Zeadally, S. (2019). Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Communications Surveys and Tutorials, 21(2), 1275–1313. https://doi.org/10.1109/COMST.2018.2869360
DOI: https://doi.org/10.1109/COMST.2018.2869360
Google Scholar
IEEE Communications Society. (2018). IEEE Standard for Adoption of OpenFog Reference Architecture for Fog Computing. In The Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/IEEESTD.2018.8423800
DOI: https://doi.org/10.1109/IEEESTD.2018.8423800
Google Scholar
Joshi, N. (n.d.). Fog vs Edge vs Mist computing. Which one is the most suitable for your business? Retrieved June 21, 2020, from https://www.allerin.com/blog/fog-vs-edge-vs-mistcomputing-which-one-is-the-most-suitable-for-your-business
Google Scholar
Kharchenko, K., & Beznosyk, O. (2018). The input file format for IoT management systems based on a data flow virtual machine. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT) (139–142). IEEE. https://doi.org/10.1109/DESSERT.2018.8409115
DOI: https://doi.org/10.1109/DESSERT.2018.8409115
Google Scholar
Kirkpatrick, K. (2013). Software-defined networking. Communications of the ACM, 56(9), 16–19. https://doi.org/10.1145/2500468.2500473
DOI: https://doi.org/10.1145/2500468.2500473
Google Scholar
Klügl, F., & Bazzan, A. L. C. (2012). Agent-Based Modeling and Simulation. AI Magazine, 33(3), 29. https://doi.org/10.1609/aimag.v33i3.2425
DOI: https://doi.org/10.1609/aimag.v33i3.2425
Google Scholar
Laghari, S., & Niazi, M. A. (2016). Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach. PLOS ONE, 11(1), e0146760. https://doi.org/10.1371/journal.pone.0146760
DOI: https://doi.org/10.1371/journal.pone.0146760
Google Scholar
Lewis, P. R., Platzner, M., Rinner, B., Tørresen, J., & Yao, X. (2016). Self-aware Computing Systems. In P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, & X. Yao (Eds.), Natural Computing Series. https://doi.org/10.1007/978-3-319-39675-0
DOI: https://doi.org/10.1007/978-3-319-39675-0
Google Scholar
Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems (1st ed.). Manning Publication.
Google Scholar
Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal of Network and Computer Applications, 119(June), 42–56. https://doi.org/10.1016/j.jnca.2018.06.016
DOI: https://doi.org/10.1016/j.jnca.2018.06.016
Google Scholar
Multimethod Simulation Modeling for Business Applications – AnyLogic Simulation Software. (n.d.). Retrieved October 5, 2020, from https://www.anylogic.com/resources/whitepapers/multimethod-simulation-modeling-for-business-applications/
Google Scholar
Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018a). Designing security of personal data in distributed health care platform. Technology Audit and …, 2(42). https://doi.org/10.15587/2312-8372.2018.141299
DOI: https://doi.org/10.15587/2312-8372.2018.141299
Google Scholar
Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018b). Detection of human respiration patterns using deep convolution neural networks. Eastern-European Journal of Enterprise Technologies, 4(9(94)), 6–13. https://doi.org/10.15587/1729-4061.2018.139997
DOI: https://doi.org/10.15587/1729-4061.2018.139997
Google Scholar
Pysmennyi, I., Kyslyi, R., & Petrenko, A. (2019). Edge computing in multi-scope service-oriented mobile healthcare systems. System Research and Information Technologies, (1), 118–127. https://doi.org/10.20535/SRIT.2308-8893.2019.1.09
DOI: https://doi.org/10.20535/SRIT.2308-8893.2019.1.09
Google Scholar
Rahmani, A. M., Liljeberg, P., Preden, J.-S., & Jantsch, A. (2018). Fog Computing in the Internet of Things. Springer. https://doi.org/10.1007/978-3-319-57639-8
DOI: https://doi.org/10.1007/978-3-319-57639-8
Google Scholar
Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University - Computer and Information Sciences, 30(3), 291–319. https://doi.org/10.1016/j.jksuci.2016.10.003
DOI: https://doi.org/10.1016/j.jksuci.2016.10.003
Google Scholar
Oma, R., Nakamura, S., & Duolikun, D. (2019). A fault-tolerant tree-based fog computing model. International Journal of Web and Grid Services, 15(3), 219. https://doi.org/10.1504/IJWGS.2019.10022420
DOI: https://doi.org/10.1504/IJWGS.2019.10022420
Google Scholar
Satyanarayanan, M. (2017). Edge Computing. Computer, 50(10), 36–38. https://doi.org/10.1109/MC.2017.3641639
DOI: https://doi.org/10.1109/MC.2017.3641639
Google Scholar
Sedgewick, R., & Wayne, K. (2011). Algorithms. In Foreign Affairs (4th ed.). Westford: AddisonWesley.
Google Scholar
Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 Spot Instances – Amazon Elastic Compute Cloud. (n.d.). Retrieved July 7, 2020, from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
DOI: https://doi.org/10.1109/JIOT.2016.2579198
Google Scholar
Stojmenovic, I., & Wen, S. (2014). The Fog Computing Paradigm: Scenarios and Security Issues. 2, 1–8. https://doi.org/10.15439/2014F503
DOI: https://doi.org/10.15439/2014F503
Google Scholar
World Health Organization. (2010). Telemedicine Opportunities and developments in Member States. In World Health Organization (Vol. 2).
Google Scholar
Xiao, Y., & Zhu, Ch. (2017). Vehicular fog computing: Vision and challenges. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 6–9. https://doi.org/10.1109/PERCOMW.2017.7917508
DOI: https://doi.org/10.1109/PERCOMW.2017.7917508
Google Scholar
Yogi, M. K., Sekhar, K. C., & Kumar, G. V. (2017). Mist Computing: Principles, Trends and Future Direction. International Journal of Computer Science and Engineering, 4(7), 19–21. https://doi.org/10.14445/23488387/IJCSE-V4I7P104
DOI: https://doi.org/10.14445/23488387/IJCSE-V4I7P104
Google Scholar
Authors
Ihor PYSMENNYIihor.pismennyy@gmail.com
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine
Authors
Anatolii PETRENKONational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine
Authors
Roman KYSLYINational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv Ukraine
Statistics
Abstract views: 291PDF downloads: 29
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Mateusz Sawa, Mirosław Szala, Weronika Henzler, INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY , Applied Computer Science: Vol. 17 No. 3 (2021)
You may also start an advanced similarity search for this article.