Alexopoulos, K., Anagiannis, I., Nikolakis, N., & Chryssolouris, G. (2022). A quantitative approach to resilience in manufacturing systems. International Journal of Production Research, 60(13), 4342–4360.
DOI: https://doi.org/10.1080/00207543.2021.2018519
Bakar, B. A., Henry, R. M., & Ali, M. (1991). An alternative approach in batch process control implementation using hierarchical Petri nets, World Scientific. Proc. of the International Conference on Computer Integrated Manufacturing (pp. 171–174).
Banaszak, Z. (1992). Synchronisation of robots in flexible assembly systems. Archiwum Budowy Maszyn, 39(1–2), 117–133.
Banaszak, Z., Skolud, B., & Zaremba, M. B. (2003). Computer-aided prototyping of production flows for virtual enterprise. Journal of Intelligent Manufacturing, 14, 83–106.
DOI: https://doi.org/10.1023/A:1022291313614
Bocewicz, G., Wójcik, R., Witczak, M., & Banaszak, Z. (2022). Petri Net Approach to Automated Modelling and Performance Evaluation for Robotic Assembly Systems. 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR) (pp. 306–311). IEEE. https://doi.org/10.1109/MMAR55195.2022.9874291
DOI: https://doi.org/10.1109/MMAR55195.2022.9874291
Bujari, A., Calvio, A., Foschini, L., Sabbioni, A., & Corradi, A. (2021). A Digital Twin Decision Support System for the Urban Facility Management Process. Sensors, 21(24), 8460. https://doi.org/10.3390/s21248460
DOI: https://doi.org/10.3390/s21248460
Claes, D., & Tuyls, K. (2018). Multi robot collision avoidance in a shared workspace. Autonomous Robots, 42, 1749–1770. https://doi.org/10.1007/s10514-018-9726-5
DOI: https://doi.org/10.1007/s10514-018-9726-5
Coito, T., Faria, P., Martins, M. S. E., Firme, B., Vieira, S. M., Figueiredo, J., & Sousa, J. M. C. (2022). Digital Twin of a Flexible Manufacturing System for Solutions Preparation. Automation, 3(1), 153–175. https://doi.org/10.3390/automation3010008
DOI: https://doi.org/10.3390/automation3010008
David, J., Lobov, A., & Lanz, M. (2018). Leveraging Digital Twins for Assisted Learning of Flexible Manufacturing Systems. 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (pp. 529-535). IEEE. https://doi.org/10.1109/INDIN.2018.8472083
DOI: https://doi.org/10.1109/INDIN.2018.8472083
Hatono, I., Katoh, N., Yamagata, K., & Tamura, H. (1989). Modelling of FMS under uncertainty using stochastic Petri Nets. Proc. of the 3rd International Workshop on Petri nets and performance models (pp. 122–130).
He, Z., Zhang, R., Ran, N., & Gu, C. (2022). Path Planning of Multi-Type Robot Systems with Time Windows Based on Timed Colored Petri Nets. Applied Science, 12(14), 6878. https://doi.org/10.3390/app12146878
DOI: https://doi.org/10.3390/app12146878
Heiner, M. (1992). Petri net based software validation (prospects and limits), Technical report No. TR-92-022. International Computer Science Institute.
Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic Algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256–270.
DOI: https://doi.org/10.1016/j.apm.2018.08.016
Jensen, K. (1987). Computer tools for construction, modification and analysis of Petri nets. Lecture Notes on Computer Science (No. 255). Springer Verlag.
DOI: https://doi.org/10.1007/3-540-17906-2_20
Jonsson, P. (2000). An empirical taxonomy of advanced manufacturing technology. International Journal of Operations & Production Management, 20(12), 1446–1474.
DOI: https://doi.org/10.1108/01443570010353103
Laemmle, A., & Gust, S. (2019). Automatic layout generation of robotic production cells in a 3D manufacturing simulation environment. Procedia CIRP, 84, 316–321.
DOI: https://doi.org/10.1016/j.procir.2019.04.207
Makris, S., Michalos, G., & Chryssolouris, G. (2012). Virtual Commissioning of an Assembly Cell with Cooperating Robots. Advances in Decision Sciences, 2012, 428060. https://doi.org/10.1155/2012/428060
DOI: https://doi.org/10.1155/2012/428060
Manu, G., Kumar, V. M., Nagesh, H., Jagadeesh, D., & Gowtham, M. B. (2018). Flexible Manufacturing Systems (FMS): A Review. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 323–336.
DOI: https://doi.org/10.24247/ijmperdapr201836
Neto, A. A., Carrijoa B. S., Brock, J. G. R, Deschamps, F., & Lima, E. P. (2021). Digital twin-driven decision support system for opportunistic preventive maintenance scheduling in manufacturing. Procedia Manufacturing, 55, 439–446.
DOI: https://doi.org/10.1016/j.promfg.2021.10.060
Nielsen, L. D., Sung, I., & Nielsen, P. (2019). Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors, 19(19), 4165. https://doi.org/10.3390/s19194165
DOI: https://doi.org/10.3390/s19194165
Nielsen, P., Michna, Z., & Do, N. A. D. (2014). An Empirical Investigation of Lead Time Distributions. Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World. APMS 2014. IFIP Advances in Information and Communication Technology (vol. 438). Springer. https://doi.org/10.1007/978-3-662-44739-0_53
DOI: https://doi.org/10.1007/978-3-662-44739-0_53
Patalas-Maliszewska, J., & Kłos, S. (2019). An Approach to Supporting the Selection of Maintenance Experts in the Context of Industry 4.0. Applied Sciences, 9(9), 1848. https://doi.org/10.3390/app9091848
DOI: https://doi.org/10.3390/app9091848
Rachamadugu, R., & Stecke, K. E. (1994). Classification and review of FMS scheduling procedures. Production Planning & Control, 5(1), 2–20. https://doi.org/10.1080/09537289408919468
DOI: https://doi.org/10.1080/09537289408919468
Recalde, L., Silva, M., Ezpeleta, J., & Teruel, E. (2022). Petri Nets and Manufacturing Systems: An ExamplesDriven Tour. ACPN 2003. Lecture Notes in Computer Science (vol. 3098). Springer. https://doi.org/10.1007/978-3-540-27755-2_21
DOI: https://doi.org/10.1007/978-3-540-27755-2_21
Reisig, W. (1982). Petri nets. Springer Verlag. Reutenauer, Ch. (1988). The mathematics of Petri nets. Englewood Cliffs.
Silva, E. B., Costa, M. G., Silva, M. F., & Pereira, F. H. (2012). Evaluation of Production Sequencing Rules in Job Shop and Flow Shop Environment through Computer Simulation. ICIEOM 2012 (no. 257).
Sliwa, M., & Patalas-Maliszewska, J. (2016). A Strategic Knowledge Map for the Research and Development Department in a Manufacturing Company. Foundations of Management, 8(1), 151–166.
DOI: https://doi.org/10.1515/fman-2016-0012
Stączek, P., Pizoń, J., Danilczuk, W., & Gola, A. (2021). A digital twin approach for the improvement of an autonomous mobile robots (AMR's) operating environment – a case study. Sensors, 21(23), 7830. https://doi.org/10.3390/s21237830
DOI: https://doi.org/10.3390/s21237830
Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
Vaisi, B. (2022). A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decision Analytics Journal, 2, 100031. https://doi.org/10.1016/j.dajour.2022.100031
DOI: https://doi.org/10.1016/j.dajour.2022.100031
Van der Aalst, W. M. (1992). Timed coloured Petri nets and their application to logistics. Technische Universiteit Eindhoven.
DOI: https://doi.org/10.1007/3-540-56863-8_61
Viswandham, N., & Narahari, Y. (1992). Performance modelling of automated manufacturing systems. Prentice-Hall.
Yang, B., & Hu, H. (2022). Maximally Permissive Deadlock and Livelock Avoidance for Automated Manufacturing Systems via Critical Distance. In IEEE Transactions on Automation Science and Engineering. IEEE. https://doi.org/10.1109/TASE.2021.3138169
DOI: https://doi.org/10.1109/TASE.2021.3138169
Zanchettin, A. M. (2021). Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems. Flexible Services and Manufacturing Journal, 34, 293–316. https://doi.org/10.1007/s10696-021-09406-x
DOI: https://doi.org/10.1007/s10696-021-09406-x
Zhang, F., Bai, J., & Yang, D. (2022). Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision. Scientific Reports, 12, 1546. https://doi.org/10.1038/s41598-022-05304-w
DOI: https://doi.org/10.1038/s41598-022-05304-w
Zhou, K. Q., & Zain, A. M. (2016). Fuzzy Petri nets, and industrial applications: a review. Artificial Intelligence Review, 45(4), 405–446. https://doi.org/10.1007/s10462-015-9451-9
DOI: https://doi.org/10.1007/s10462-015-9451-9