Brennen, C. E. (2011). Hydrodynamics of pumps. Cambridge University Press.
DOI: https://doi.org/10.1017/CBO9780511976728
Capocelli, M., Musmarra, D., Prisciandaro, M., & Lancia, A. (2014). Chemical effect of hydrodynamic cavitation: simulation and experimental comparison. AIChE Journal, 60(7), 2566–2572. https://doi.org/10.1002/aic.14472
DOI: https://doi.org/10.1002/aic.14472
Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of fluids engineering, 133(1), 011101. https://doi.org/10.1115/1.4003196
DOI: https://doi.org/10.1115/1.4003196
Franc, J. P. (2006). Physics and control of cavitation. Grenoble Univ (France).
Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chemical Engineering Journal, 338, 599–627. https://doi.org/10.1016/j.cej.2018.01.049
DOI: https://doi.org/10.1016/j.cej.2018.01.049
Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE Journal, 46(8), 1641–1649. https://doi.org/10.1002/aic.690460815
DOI: https://doi.org/10.1002/aic.690460815
Gogate, P. R., Tayal, R. K., & Pandit, A. B. (2006). Cavitation: a technology on the horizon. Current science, 91(1), 35–46.
Gogate, P. R., Thanekar, P. D., & Oke, A. P. (2020). Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches. Ultrasonics Sonochemistry, 64, 105016. https://doi.org/10.1016/j.ultsonch.2020.105016
DOI: https://doi.org/10.1016/j.ultsonch.2020.105016
Iannetti, A., Stickland, M. T., & Dempster, W. M. (2016). A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’cavitation model. Engineering Applications of Computational Fluid Mechanics, 10(1), 57–71. https://doi.org/10.1080/19942060.2015.1110535
DOI: https://doi.org/10.1080/19942060.2015.1110535
Kunz, R. F., Boger, D. A., Chyczewski, T. S., Stinebring, D., Gibeling, H., & Govindan, T. (1999). Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference. American Society of Mechanical Engineers.
Menter, F. (1993). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
DOI: https://doi.org/10.2514/6.1993-2906
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605.
DOI: https://doi.org/10.2514/3.12149
Moholkar, V. S., & Pandit, A. B. (1997). Bubble behavior in hydrodynamic cavitation: effect of turbulence. AIChE Journal, 43(6), 1641–1648.
DOI: https://doi.org/10.1002/aic.690430628
Omelyanyuk, M., Ukolov, A., Pakhlyan, I., Bukharin, N., & El Hassan, M. (2022). Experimental and Numerical Study of Cavitation Number Limitations for Hydrodynamic Cavitation Inception Prediction. Fluids, 7(6), 198. https://doi.org/10.3390/fluids7060198
DOI: https://doi.org/10.3390/fluids7060198
Patil, P. B., Bhandari, V. M., & Ranade, V. V. (2021). Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation. Ultrasonics Sonochemistry, 70, 105306. https://doi.org/10.1016/j.ultsonch.2020.105306
DOI: https://doi.org/10.1016/j.ultsonch.2020.105306
Salvatore, F., Streckwall, H., & Van Terwisga, T. (2009). Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In Proceedings of the first international symposium on marine propulsors, Trondheim, Norway (pp. 22–24).
Sauer, J., & Schnerr, G. H. (2001). Development of a new cavitation model based on bubble dynamics. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 81(S3 S3), 561–562. https://doi.org/10.1002/zamm.20010811559
DOI: https://doi.org/10.1002/zamm.20010811559
Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multi-phase flow (Vol. 1). ICMF New Orleans.
Shi, H., Li, M., Nikrityuk, P., & Liu, Q. (2019). Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chemical Engineering Science, 207, 672–687.
DOI: https://doi.org/10.1016/j.ces.2019.07.004
Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. J. Fluids Eng., 124(3), 617–624. https://doi.org/10.1115/1.1486223
DOI: https://doi.org/10.1115/1.1486223
Subhas, S., Saji, V. F., Ramakrishna, S., & Das, H. N. (2012). CFD analysis of a propeller flow and cavitation. International Journal of Computer Applications, 55(16), 26–33.
DOI: https://doi.org/10.5120/8841-3125
Tao, Y., Cai, J., Huai, X., Liu, B., & Guo, Z. (2016). Application of hydrodynamic cavitation to wastewater treatment. Chemical engineering & technology, 39(8), 1363–1376. https://doi.org/10.1002/ceat.201500362
DOI: https://doi.org/10.1002/ceat.201500362
Wang, B., Su, H., & Zhang, B. (2021). Hydrodynamic cavitation as a promising route for wastewater treatment– A review. Chemical Engineering Journal, 412, 128685. https://doi.org/10.1016/j.cej.2021.128685
DOI: https://doi.org/10.1016/j.cej.2021.128685
Zheng, X. B., Liu, L. L., Guo, P. C., Hong, F., & Luo, X. Q. (2018, July). Improved Schnerr-Sauer cavitation model for unsteady cavitating flow on NACA66. IOP Conference Series: Earth and Environmental Science, 163(1), 012020).
DOI: https://doi.org/10.1088/1755-1315/163/1/012020
Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. In Fifth international conference on multi-phase flow, Yokohama, Japan ( No. 152).