PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU

Erizal ERIZAL


Universitas Respati Yogyakarta, Faculty of Science and Technology, Department of Information System (Indonesia)

Mohammad DIQI

diqi@respati.ac.id
Universitas Respati Yogyakarta, Faculty of Science and Technology, Department of Informatics (Indonesia)
https://orcid.org/0000-0002-9012-9080

Abstract

Stock prediction is an exciting issue and is very much needed by investors and business people to develop their assets. The main difficulties in predicting stock prices are dynamic movements, high volatility, and noises caused by company performance and external influences. The traditional method used by investors is the technical analysis based on statistics, valuation of previous stock portfolios, and news from the mass media and social media. Deep learning can predict stock price movements more accurately than traditional methods. As a solution to the issue of stock prediction, we offer the Exponential Moving Average Gated Recurrent Unit (EMAGRU) model and demonstrate its utility. The EMAGRU architecture contains two stacked GRUs arranged in parallel. The inputs and outputs are the EMA10 and EMA20, formed from the closing prices over ten years. We also combine the AntiReLU and ReLU activation functions into the model so that EMAGRU has 6 model variants. Our proposed model produced low losses and high accuracy. RMSE, MEPA, MAE, R2 and  were 0.0060, 0.0064, 0.0050, and 0.9976 for EMA10, and 0.0050, 0.0058, 0.0045, and 0.9982 for EMA20, respectively.


Keywords:

Stock Prediction, Deep Learning, GRU, EMA, ReLU, AntiReLU

Chen, W., Jiang, M., Zhang, W. G., & Chen, Z. (2021). A novel graph convolutional feature based convolutional neural network for stock trend prediction. Information Sciences, 556, 67-94. https://doi.org/10.1016/j.ins.2020.12.068
DOI: https://doi.org/10.1016/j.ins.2020.12.068   Google Scholar

Chen, W., Zhang, H., Mehlawat, M. K., & Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100, 106943. https://doi.org/10.1016/j.asoc.2020.106943
DOI: https://doi.org/10.1016/j.asoc.2020.106943   Google Scholar

Chiniforoush, N., & Latif Shabgahi, G. (2021). A novel method for forecasting surface wind speed using winddirection based on hierarchical markov model. International Journal of Engineering, 34(2), 414-426. https://doi.org/10.5829/ije.2021.34.02b.13
DOI: https://doi.org/10.5829/ije.2021.34.02b.13   Google Scholar

Chun, J., Ahn, J., Kim, Y., & Lee, S. (2021). Using deep learning to develop a stock price prediction model based on individual investor emotions. Journal of Behavioral Finance, 22(4), 480-489. https://doi.org/10.1080/15427560.2020.1821686
DOI: https://doi.org/10.1080/15427560.2020.1821686   Google Scholar

Diqi, M. (2022). StockTM: Accurate stock price prediction model using LSTM. International Journal of Informatics and Computation, 4(1), 1-10. https://doi.org/10.35842/ijicom.v4i1.50
DOI: https://doi.org/10.35842/ijicom.v4i1.50   Google Scholar

Diqi, M., Hiswati, M. E., & Nur, A. S. (2022). StockGAN: Robust stock price prediction using GAN algorithm. International Journal of Information Technology, 14(5), 2309–2315. https://doi.org/10.1007/s41870-022-00929-6
DOI: https://doi.org/10.1007/s41870-022-00929-6   Google Scholar

Diqi, M., Mulyani, S. H., & Pradila, R. (2023). DeepCov: Effective prediction model of COVID-19 using CNN algorithm. SN Computer Science, 4, 396. https://doi.org/10.1007/s42979-023-01834-w
DOI: https://doi.org/10.1007/s42979-023-01834-w   Google Scholar

Gao, Y., Wang, R., & Zhou, E. (2021). Stock prediction based on optimized LSTM and GRU models. Scientific Programming, 2021, 4055281. https://doi.org/10.1155/2021/4055281
DOI: https://doi.org/10.1155/2021/4055281   Google Scholar

Jabeen, A., Afzal, S., Maqsood, M., Mehmood, I., Yasmin, S., Niaz, M. T., & Nam, Y. (2021). An LSTM based forecasting for major stock sectors using COVID sentiment. Computers, Materials and Continua, 67(1), 1191-1206. https://doi.org/10.32604/cmc.2021.014598
DOI: https://doi.org/10.32604/cmc.2021.014598   Google Scholar

Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/IJCS-05-2020-0012
DOI: https://doi.org/10.1108/IJCS-05-2020-0012   Google Scholar

Jin, Z., Yang, Y., & Liu, Y. (2020). Stock closing price prediction based on sentiment analysis and LSTM. Neural Computing and Applications, 32(13), 9713-9729. https://doi.org/10.1007/s00521-019-04504- 2
DOI: https://doi.org/10.1007/s00521-019-04504-2   Google Scholar

Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., & Alfakeeh, A. S. (2022). Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing, 13(7), 3433-3456. https://doi.org/10.1007/s12652-020- 01839-w
DOI: https://doi.org/10.1007/s12652-020-01839-w   Google Scholar

Ko, C.- R., & Chang, H.- T. (2021). LSTM-based sentiment analysis for stock price forecast. PeerJ Computer Science, 7, e408. https://doi.org/10.7717/peerj-cs.408
DOI: https://doi.org/10.7717/peerj-cs.408   Google Scholar

Li, X., Wu, P., & Wang, W. (2020). Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing and Management, 57(5), 102212. https://doi.org/10.1016/j.ipm.2020.102212
DOI: https://doi.org/10.1016/j.ipm.2020.102212   Google Scholar

Lin, H.- C., Chen, C., Huang, G.- F., & Jafari, A. (2021). Stock price prediction using generative adversarial networks. Journal of Computer Science, 17(3), 188-196. https://doi.org/10.3844/JCSSP.2021.188.196
DOI: https://doi.org/10.3844/jcssp.2021.188.196   Google Scholar

Liwei, T., Li, F., Yu, S., & Yuankai, G. (2021). Forecast of LSTM-XGBoost in stock price based on bayesian optimization. Intelligent Automation and Soft Computing, 29(3), 855-868. https://doi.org/10.32604/iasc.2021.016805
DOI: https://doi.org/10.32604/iasc.2021.016805   Google Scholar

Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN-LSTM-based model to forecast stock prices. Complexity, 2020, 6622927. https://doi.org/10.1155/2020/6622927
DOI: https://doi.org/10.1155/2020/6622927   Google Scholar

Lv, J., Wang, C., Gao, W., & Zhao, Q. (2021). An Economic Forecasting Method Based on the LightGBMOptimized LSTM and Time-Series Model. Computational Intelligence and Neuroscience, 2021, 8128879. https://doi.org/10.1155/2021/8128879
DOI: https://doi.org/10.1155/2021/8128879   Google Scholar

Manjunath, C., Marimuthu, B., & Ghosh, B. (2021). Deep learning for stock market index price movement forecasting using improved technical analysis. International Journal of Intelligent Engineering and Systems, 14(5), 129-141. https://doi.org/10.22266/ijies2021.1031.13
DOI: https://doi.org/10.22266/ijies2021.1031.13   Google Scholar

Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., Salwana, E., & Shahab, S. (2020). Deep learning for stock market prediction. Entropy, 22(8), 840. https://doi.org/10.3390/E22080840
DOI: https://doi.org/10.3390/e22080840   Google Scholar

Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, 53(4), 3007-3057. https://doi.org/10.1007/s10462-019-09754-z
DOI: https://doi.org/10.1007/s10462-019-09754-z   Google Scholar

Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE, 15(1), e0227222. https://doi.org/10.1371/journal.pone.0227222
DOI: https://doi.org/10.1371/journal.pone.0227222   Google Scholar

Radojičić, D., & Kredatus, S. (2020). The impact of stock market price fourier transform analysis on the gated recurrent unit classifier model. Expert Systems with Applications, 159, 113565. https://doi.org/10.1016/j.eswa.2020.113565
DOI: https://doi.org/10.1016/j.eswa.2020.113565   Google Scholar

Saud, A. S., & Shakya, S. (2021). 3-Way gated recurrent unit network architecture for stock price prediction. Indian Journal of Computer Science and Engineering, 12(2), 421-427. https://doi.org/10.21817/indjcse/2021/v12i2/211202011
DOI: https://doi.org/10.21817/indjcse/2021/v12i2/211202011   Google Scholar

Savadi Hosseini, M., & Ghaderi, F. (2020). A Hybrid deep learning architecture using 3D CNNs and GRUs for human action recognition. International Journal of Engineering, 33(5), 959-965. https://doi.org/10.5829/ije.2020.33.05b.29
DOI: https://doi.org/10.5829/ije.2020.33.05b.29   Google Scholar

Shahi, T. B., Shrestha, A., Neupane, A., & Guo, W. (2020). Stock price forecasting with deep learning: a comparative study. Mathematics, 8(9), 1441. https://doi.org/10.3390/math8091441
DOI: https://doi.org/10.3390/math8091441   Google Scholar

Ta, V.- D., Liu, C.- M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using longshort term memory network in quantitative trading. Applied Sciences, 10(2), 437. https://doi.org/10.3390/app10020437
DOI: https://doi.org/10.3390/app10020437   Google Scholar

Thormann, M.- L., Farchmin, J., Weisser, C., Kruse, R.- M., Safken, B., & Silbersdorff, A. (2021). Stock price predictions with LSTM neural networks and twitter sentiment. Statistics, Optimization and Information Computing, 9(2), 268-287. https://doi.org/10.19139/soic-2310-5070-1202
DOI: https://doi.org/10.19139/soic-2310-5070-1202   Google Scholar

Wang, C.- C., Chien, C.- H., & Trappey, A. J. C. (2021). On the application of ARIMA and LSTM to predict order demand based on short lead time and on-time delivery requirements. Processes, 9(7), 1157. https://doi.org/10.3390/pr9071157
DOI: https://doi.org/10.3390/pr9071157   Google Scholar

Zhang, S., & Fang, W. (2021). Multifractal behaviors of stock indices and their ability to improve forecasting in a volatility clustering period. Entropy, 23(8), 1018. https://doi.org/10.3390/e23081018
DOI: https://doi.org/10.3390/e23081018   Google Scholar

Zhao, J., Zeng, D., Liang, S., Kang, H., & Liu, Q. (2021). Prediction model for stock price trend based on recurrent neural network. Journal of Ambient Intelligence and Humanized Computing, 12, 745-753. https://doi.org/10.1007/s12652-020-02057-0
DOI: https://doi.org/10.1007/s12652-020-02057-0   Google Scholar

Download


Published
2023-09-30

Cited by

ERIZAL, E., & DIQI, M. (2023). PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU. Applied Computer Science, 19(3), 160–173. https://doi.org/10.35784/acs-2023-30

Authors

Erizal ERIZAL 

Universitas Respati Yogyakarta, Faculty of Science and Technology, Department of Information System Indonesia

Authors

Mohammad DIQI 
diqi@respati.ac.id
Universitas Respati Yogyakarta, Faculty of Science and Technology, Department of Informatics Indonesia
https://orcid.org/0000-0002-9012-9080

Statistics

Abstract views: 589
PDF downloads: 160


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.