A COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY

Marcin PERY

marcin.pery@wat.edu.pl
Military University of Technology (Poland)
https://orcid.org/0009-0005-1272-2048

Robert WASZKOWSKI


Military University of Technology (Poland)
https://orcid.org/0000-0002-0170-227X

Abstract

This paper presents a comprehensive computational system designed to evaluate the undetectability of video steganography from human perspective. The system assesses the perceptibility of steganographic modifications to the human eye while simultaneously determining the minimum encoding level required for successful automated decoding of hidden messages. The proposed architecture comprises four subsystems: steganogram database preparation, human evaluation, automated decoding, and comparative analysis. The system was tested using example steganographic techniques applied to a dataset of video files. Experimental results revealed the thresholds of human-level undetectability and automated decoding for each technique, enabling the identification of critical differences between human and algorithmic detection capabilities. This research contributes to the field of steganography by offering a novel framework for evaluating the trade-offs between human perception and automated decoding in video-based information hiding. The system serves as a tool for advancing the development of more secure and reliable video steganographic techniques.

Supporting Agencies

The work was partially financed by the Military University of Technology in Warsaw, Poland as part of the project No. UGB 22-701.

Keywords:

steganography, video steganography, human perception, undetectability, information hiding

Anderson, R., & Petitcolas, F. (1998). On the limits of steganography. IEEE Journal on Selected Areas in Communications, 16(4), 474-481. https://doi.org/10.1109/49.668971
  Google Scholar

Chan, C.-K., & Cheng, L. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37(3), 469-474. https://doi.org/10.1016/j.patcog.2003.08.007
  Google Scholar

Cox, I., Miller, M., Bloom, J., Fridrich, J., & Kalker, T. (2007). Digital watermarking and steganography. Morgan Kaufmann Publishers.
  Google Scholar

DensoWave. (2024). QR code. https://www.qrcode.com/
  Google Scholar

Fridrich, J. (2009). Steganography in digital media: Principles, algorithms, and applications. Cambridge University Press, 277-292. https://doi.org/10.1017/CBO9781139192903.014
  Google Scholar

Hossain, M. A., Noor, N. U., Ullah, A., Noman, S. H., Pranta, S. D., Bristy, L. M., & Bashar, M. (2024) Enhancing video steganography techniques, using hybrid algorithms. Open Access Library Journal, 11, e11489. https://doi.org/10.4236/oalib.1111489
  Google Scholar

Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13), 800-801. https://doi.org/10.1049/el:20080522
  Google Scholar

Jangid, S., & Sharma, S. (2017). High PSNR based video steganography by MLC(multi-level clustering) algorithm. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 589-594). IEEE. https://doi.org/10.1109/ICCONS.2017.8250530
  Google Scholar

Johnson, N. F., & Jajodia, S. (1998). Exploring steganography, seeing the unseen. IEEE Computer, 31(2), 26-34. https://doi.org/10.1109/MC.1998.4655281
  Google Scholar

Kadhim, I. J., Premaratne, P., Vial, P. J., & Halloran, B. (2019). Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research. Neurocomputing, 335, 299-326. https://doi.org/10.1016/j.neucom.2018.06.075
  Google Scholar

Kahn, D. (1967). The codebreakers: The story of secret writing. Macmillan.
  Google Scholar

Katzenbeisser, S. & Petitcolas, F. (2000). Information hiding techniques for steganography and digital watermarking. Artech House, 28(6), 1-2. https://doi.org/10.1201/1079/43263.28.6.20001201/30373.5
  Google Scholar

Kunhoth, J., Subramanian, N., Al-Maadeed, S., & Bouridane, A. (2023). Video steganography: Recent advances and challenges. Springer - Multimedia Tools and Applications, 82, 41943-41985. https://doi.org/10.1007/s11042-023-14844-w
  Google Scholar

Majeed, N. D., Al-Askery, A., & Hasan, F. S. (2024). Hybrid video steganography and cryptography techniques: Review paper. The Fifth Scientific Conference for Electrical Engineering Techniques Research (EETR2024) (020013). AIP Publishing. https://doi.org/10.1063/5.0236185
  Google Scholar

Petitcolas, F. A. P., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding - a survey. Proceedings of the IEEE, 87(7), 1062-1078. https://doi.org/10.1109/5.771065
  Google Scholar

Pixabay.com. (2024). Pixabay License. https://pixabay.com/service/license-summary/
  Google Scholar

Sencar, H. T., Ramkumar, M., & Akansu, A. N. (2004). Data hiding fundamentals and applications. Elsevier Academic Press.
  Google Scholar

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  Google Scholar

Stern, M. K., & Johnson, J. H. (2010). Just noticeable difference. In I. B. Weiner & W. E. Craighead (Eds.), The Corsini Encyclopedia of Psychology (1st ed., pp. 1-2). Wiley. https://doi.org/10.1002/9780470479216.corpsy0481
  Google Scholar

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612. https://doi.org/10.1109/TIP.2003.819861
  Google Scholar

Download


Published
2024-12-31

Cited by

PERY, M., & WASZKOWSKI, R. (2024). A COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY. Applied Computer Science, 20(4), 63–76. https://doi.org/10.35784/acs-2024-40

Authors

Marcin PERY 
marcin.pery@wat.edu.pl
Military University of Technology Poland
https://orcid.org/0009-0005-1272-2048

Authors

Robert WASZKOWSKI 

Military University of Technology Poland
https://orcid.org/0000-0002-0170-227X

Statistics

Abstract views: 54
PDF downloads: 13


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.