APPLICATIONS OF MODERN IMAGING TECHNOLOGY IN ORTHOPAEDIC TRAUMA SURGERY
Article Sidebar
Open full text
Issue Vol. 14 No. 3 (2018)
-
NOVEL TECHNIQUE OF CUSTOMIZING THE AUDIO FADE-OUT SHAPE
Lucian LUPŞA-TĂTARU5-14
-
PRIORITIZING SOFTWARE CAPABILITIES AND FOCAL POINTS OF MS ACCESS AND EXCEL IN PERSPECTIVE OF DATA MANAGEMENT
Ali Fattah DAKHIL, Weffa Muhammed ALI, Ali Atshan Abdul REDA15-30
-
SOCIAL MEDIA AND SOCIAL RELATIONSHIPS: A CASE STUDY IN KURDISTAN SOCIETY
Mazen GHAREB, Hawraman KARIM, Shvan SALIH, Hiwa HASSAN31-42
-
FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS
Damian KRASKA, Tomasz TRZEPIECIŃSKI43-53
-
INJECTION SIMULATION FOR THE MOLD PROCESS IN THE MEDICAL INDUSTRY
Sebastian BIAŁASZ54-68
-
COMPUTER MODELLING OF THERMAL TECHNICAL SPACESS IN ASPECT OF HEAT TRANSFER THROUGH THE WALLS
Marian JANCZAREK69-80
-
NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES
Sebastian BIAŁASZ, Ramon PAMIES81-95
-
APPLICATIONS OF MODERN IMAGING TECHNOLOGY IN ORTHOPAEDIC TRAUMA SURGERY
Przemysław KRAKOWSKI, Robert KARPIŃSKI, Marcin MACIEJEWSKI96-106
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
Orthopaedic trauma surgery is a complex surgical speciality in which anatomy, physiology and physics are mixed. Proper diagnosing and based on that planning and performing surgery is of crucial matter. This article briefly summarizes available radiological modalities used for diagnostics and for surgical planning. It focuses on utility of rapid prototyping process in trauma surgery. Moreover, a case study in which this technique was used is described. Rapid prototyping proved its usefulness and in future it may become a modality of choice for planning complex trauma procedures.
Keywords:
References
The ATLS Subcommittee, American College of Surgeons’ Committee on Trauma, and the International ATLS working group.(2013). Advanced trauma life support(ATLS): the ninth edition. Journal of Trauma and Acute Care Surgery, 74(5), 1363-1366. https://doi.org/10.1097/TA.0b013e31828b82f5 DOI: https://doi.org/10.1097/TA.0b013e31828b82f5
Bargar, W. L., Bauer, A., & Börner, M. (1998). Primary and revision total hip replacement using the Robodoc system. Clinical Orthopaedics and Related Research, 354, 82–91. DOI: https://doi.org/10.1097/00003086-199809000-00011
Bégué, T. (2014). Articular fractures of the distal humerus. Orthopaedics & Traumatology: Surgery & Research, 100(suppl_1), S55–S63. https://doi.org/10.1016/j.otsr.2013.11.002 DOI: https://doi.org/10.1016/j.otsr.2013.11.002
Berrington de González, A., Mahesh, M., Kim, K. P., Bhargavan, M., Lewis, R., Mettler, F., & Land, C. (2009). Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007. Archives of Internal Medicine, 169(22), 2071–2077. https://doi.org/10.1001/archinternmed.2009.440 DOI: https://doi.org/10.1001/archinternmed.2009.440
Bächler, R., Bunke, H., & Nolte, L. P. (2001). Restricted surface matching? Numerical optimization and technical evaluation. Computer Aided Surgery, 6(3), 143–152. https://doi.org/10.1002/igs.1017 DOI: https://doi.org/10.3109/10929080109146000
Crawford, R., Walley, G., Bridgman, S., & Maffulli, N. (2007). Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. British Medical Bulletin, 84(1), 5–23. https://doi.org/10.1093/bmb/ldm022 DOI: https://doi.org/10.1093/bmb/ldm022
Cunningham, B., Jackson, K., & Ortega, G. (2014). Intraoperative CT in the Assessment of Posterior Wall Acetabular Fracture Stability. Orthopedics, 37(4), e328–e331. https://doi.org/10.3928/01477447-20140401-51 DOI: https://doi.org/10.3928/01477447-20140401-51
Dale, J. D., Ha, A. S., & Chew, F. S. (2013). Update on Talar Fracture Patterns: A Large Level I Trauma Center Study. American Journal of Roentgenology, 201(5), 1087–1092. https://doi.org/10.2214/AJR.12.9918 DOI: https://doi.org/10.2214/AJR.12.9918
Falchi, M., & Rollandi, G. A. (2004). CT of pelvic fractures. European Journal of Radiology, 50(1), 96–105. https://doi.org/10.1016/j.ejrad.2003.11.019 DOI: https://doi.org/10.1016/j.ejrad.2003.11.019
Honl, M., Dierk, O., Gauck, C., Carrero, V., Lampe, F., Dries, S., Quante, M., Schwieger, K., Hille, E., & Morlock, M. M. (2003). Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. The Journal of Bone and Joint Surgery. American Volume, 85-A(8), 1470–1478. DOI: https://doi.org/10.2106/00004623-200308000-00007
Jacob, A. L., Messmer, P., Kaim, A., Suhm, N., Regazzoni, P., & Baumann, B. (2000). A wholebody registration-free navigation system for image-guided surgery and interventional radiology. Investigative Radiology, 35(5), 279–288. https://doi.org/10.1097/00004424-200005000-00001 DOI: https://doi.org/10.1097/00004424-200005000-00001
Jenkins, P. J., Slade, K., Huntley, J. S., & Robinson, C. M. (2008). A comparative analysis of the accuracy, diagnostic uncertainty and cost of imaging modalities in suspected scaphoid fractures. Injury, 39(7), 768–774. https://doi.org/10.1016/j.injury.2008.01.003 DOI: https://doi.org/10.1016/j.injury.2008.01.003
Kemppainen, J., Pennock, A. T., Roocroft, J. H., Bastrom, T. P., & Mubarak, S. J. (2014). The Use of a Portable CT Scanner for the Intraoperative Assessment of Talocalcaneal Coalition Resections: Journal of Pediatric Orthopaedics, 34(5), 559–564. https://doi.org/10.1097/BPO.0000000000000176 DOI: https://doi.org/10.1097/BPO.0000000000000176
Lauterbur, P. C. (1973). Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature, 242(5394), 190–191. https://doi.org/10.1038/242190a0 DOI: https://doi.org/10.1038/242190a0
MacDessi, S. J., Jang, B., Harris, I. A., Wheatley, E., Bryant, C., & Chen, D. B. (2014). A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty. The Knee, 21(2), 406–409. https://doi.org/10.1016/j.knee.2013.11.004 DOI: https://doi.org/10.1016/j.knee.2013.11.004
Meskers, C. G. M., Fraterman, H., van der Helm, F. C. T., Vermeulen, H. M., & Rozing, P. M. (1999). Calibration of the “Flock of Birds” electromagnetic tracking device and its application in shoulder motion studies. Journal of Biomechanics, 32(6), 629–633. https://doi.org/10.1016/S0021-9290(99)00011-1 DOI: https://doi.org/10.1016/S0021-9290(99)00011-1
Mulford, J. S., Babazadeh, S., & Mackay, N. (2016). Three-dimensional printing in orthopaedic surgery: review of current and future applications: Three-dimensional printing in orthopaedic surgery. ANZ Journal of Surgery, 86(9), 648–653. https://doi.org/10.1111/ans.13533 DOI: https://doi.org/10.1111/ans.13533
Ohashi, K., Sanghvi, T., El-Khoury, G. Y., Ahn, J. M., Bennett, D. L., Geijer, M., Inaoka, T., Berbaum, K. (2015). Diagnostic accuracy of 3D color volume-rendered CT images for peroneal tendon dislocation in patients with acute calcaneal fractures. Acta Radiologica, 56(2), 190–195. https://doi.org/10.1177/0284185114522224 DOI: https://doi.org/10.1177/0284185114522224
Röntgen, W. C. (1896). On a New Kind of Rays. Nature, 53, 274–276. https://doi.org/10.1038/053274b0 DOI: https://doi.org/10.1038/053274b0
Oszwald, M., Citak, M., Kendoff, D., Kowal, J., Amstutz, C., Kirchhoff, T., Nolte, L. P., Krettek, C., & Hüfner, T. (2008). Accuracy of navigated surgery of the pelvis after surface matching with an a-mode ultrasound probe. Journal of Orthopaedic Research, 26(6), 860–864. https://doi.org/10.1002/jor.20551 DOI: https://doi.org/10.1002/jor.20551
Oszwald, M., Westphal, R., Bredow, J., Calafi, A., Hufner, T., Wahl, F., Krettek, Ch., & Gosling, T. (2010). Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: An experimental study on human cadaver femora. Journal of Orthopaedic Research, 28(9), 1240–1244. https://doi.org/10.1002/jor.21118 DOI: https://doi.org/10.1002/jor.21118
Puig, S., Kuruvilla, Y. C. K., Ebner, L., & Endel, G. (2015). Magnetic resonance tomography of the knee joint. Skeletal Radiology, 44(10), 1427–1434. https://doi.org/10.1007/s00256-015-2178-5 DOI: https://doi.org/10.1007/s00256-015-2178-5
Rahmathulla, G., Nottmeier, E. W., Pirris, S. M., Deen, H. G., & Pichelmann, M. A. (2014). Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurgical Focus, 36(3), E3. https://doi.org/10.3171/2014.1.FOCUS13516 DOI: https://doi.org/10.3171/2014.1.FOCUS13516
Rajasekaran, S., Karthik, K., Ravi Chandra, V., Rajkumar, N., & Dheenadhayalan, J. (2010). Role of intraoperative 3D C-arm-based navigation in percutaneous excision of osteoid osteoma of long bones in children: Journal of Pediatric Orthopaedics B, 19(2), 195–200. https://doi.org/10.1097/BPB.0b013e328333997a DOI: https://doi.org/10.1097/BPB.0b013e328333997a
Richmond, C. (2004). Sir Godfrey Hounsfield. BMJ, 329, 687. https://doi.org/10.1136/bmj.329.7467.687 DOI: https://doi.org/10.1136/bmj.329.7467.687
Rosas, H. G. (2014). Magnetic Resonance Imaging of the Meniscus. Magnetic Resonance Imaging Clinics of North America, 22(4), 493–516. https://doi.org/10.1016/j.mric.2014.07.002 DOI: https://doi.org/10.1016/j.mric.2014.07.002
Segal, L. S., & Shrader, M. W. (2013). Missed fractures in paediatric trauma patients. Acta Orthopaedica Belgica, 79(6), 608–615.
Shin, A. Y., Morin, W. D., Germany, J. D., Jones, S. B., & Lapinsky, A. S. (1996). The Superiority of Magnetic Resonance Imaging in Differentiating the Cause of Hip Pain in Endurance Athletes. The American Journal of Sports Medicine, 24(2), 168–176. https://doi.org/10.1177/036354659602400209 DOI: https://doi.org/10.1177/036354659602400209
Shindle, M. K., Foo, L. F., Kelly, B. T., Khanna, A. J., Domb, B. G., Farber, A., Wanich, T., & Potter, H. G. (2006). Magnetic Resonance Imaging of Cartilage in the Athlete: Current Techniques and Spectrum of Disease. The Journal of Bone and Joint Surgery (American), 88(suppl_4), 27-46. https://doi.org/10.2106/JBJS.F.00614 DOI: https://doi.org/10.2106/JBJS.F.00614
Silva Jr., J. R., Hayashi, D., Yonenaga, T., Fukuda, K., Genant, H. K., Lin, C., Rahmouni, A., & Guermazi, A. (2013). MRI of bone marrow abnormalities in hematological malignancies. Diagnostic and Interventional Radiology, 19, 393-399. https://doi.org/10.5152/dir.2013.067 DOI: https://doi.org/10.5152/dir.2013.067
Taylor, R. H., Joskowicz, L., Williamson, B., Guéziec, A., Kalvin, A., Kazanzides, P., Van Vorhis, R., Yao, J., Kumar, R., Bzostek, A., Sahay, A., Börner, M., & Lahmer, A. (1999). Computer-integrated revision total hip replacement surgery: concept and preliminary results. Medical Image Analysis, 3(3), 301–319. DOI: https://doi.org/10.1016/S1361-8415(99)80026-7
Wong, K. P. L., Han, A. X., Wong, J. L. Y., & Lee, D. Y. H. (2017). Reliability of magnetic resonance imaging in evaluating meniscal and cartilage injuries in anterior cruciate ligament-deficient knees. Knee Surgery, Sports Traumatology, Arthroscopy, 25(2), 411–417. https://doi.org/10.1007/s00167-016-4211-1 DOI: https://doi.org/10.1007/s00167-016-4211-1
Zheng, G., Kowal, J., González Ballester, M. A., Caversaccio, M., & Nolte, L.-P. (2007). Registration techniques for computer navigation. Current Orthopaedics, 21(3), 170–179. https://doi.org/10.1016/j.cuor.2007.03.002 DOI: https://doi.org/10.1016/j.cuor.2007.03.002
Zheng, G., & Nolte, L. P. (2015). Computer-Assisted Orthopedic Surgery: Current State and Future Perspective. Frontiers in Surgery, 2, 66. https://doi.org/10.3389/fsurg.2015.00066 DOI: https://doi.org/10.3389/fsurg.2015.00066
Article Details
Abstract views: 222
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
