GENERALIZED APPROACH TO HURST EXPONENT ESTIMATING BY TIME SERIES
Article Sidebar
Open full text
Issue Vol. 8 No. 1 (2018)
-
DETERMINATION OF THE EFFICIENCY FACTORS OF THE ABSORPTION AND SCATTERING OF NICKEL NANOPARTICLES
Oleksandr Machulianskyi, Bohdan Babych, Viktor Machulianskyi4-7
-
CONTROL MODEL OF DATA STREAM TRANSMITTED OVER A NETWORK BASED ON PROXYING TECHNOLOGY
Olesia Barkovska, Vitaliy Serdechnyi8-11
-
INVESTIGATION OF THE MEMRISTOR NONLINEAR PROPERTIES
Sviatoslav Khrapko, Volodymyr Rusyn, Leonid Politansky12-15
-
IMITATION MODELING OF THE ROUTING PROCESS BASED ON FUZZY LOGIC
Ivan Lesovoy, Genagij Pylypenko16-19
-
INVARIANT PIEZORESONANCE DEVICES BASED ON ADAPTIVE MULTIFREQUENCY SYSTEMS WITH A PREDICTIVE STANDARD
Sergey Pidchenko, Alla Taranchuk20-23
-
DEVELOPMENT AND RESEARCH OF CRYPTOGRAPHIC HASH FUNCTIONS BASED ON TWO-DIMENSIONAL CELLULAR AUTOMATA
Yuliya Tanasyuk, Sergey Ostapov24-27
-
GENERALIZED APPROACH TO HURST EXPONENT ESTIMATING BY TIME SERIES
Lyudmyla Kirichenko, Tamara Radivilova, Vitalii Bulakh28-31
-
SPECTRAL SENSITIVITY OF HUMAN VISION TO THE LIGHT PULSES
Volodymyr Brailovsky, Ivan Pyslar, Magharyta Rozhdestvenska, Magdalena Michalska32-35
-
ORGANIZATION OF IMPLEMENTATION OF UBIQUITOUS SENSOR NETWORKS
Sergey Toliupa, Yuriy Kravchenko, Aleksander Trush36-39
-
PECULIARITIES OF THE RADIO SIGNALS AND HINDRANCES IN THE NAVIGATION SYSTEM OF THE REMOTE-PILOTED VEHICLES
Mykola Mykyjchuk, Volodymyr Markiv40-43
-
DISTORTIONLESS SIGNALS TRANSFER THROUGH A WIRE MEDIA METASTRUCTURE
Dmytro Vovchuk, Serhii Haliuk, Leonid Politanskyy44-47
-
THE USE OF ARTIFICIAL INTELLIGENCE IN AUTOMATED IN-HOUSE LOGISTICS CENTRES
Tomasz Rymarczyk, Grzegorz Kłosowski48-51
-
USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING
Tomasz Cieplak, Tomasz Rymarczyk, Grzegorz Kłosowski52-55
-
OPTIMIZATION OF DATA PROCESSING FOR REQUESTING OBSERVATION SYSTEMS
Iryna V. Svyd, Andrij I. Obod, Oleksandr S. Maltsev, Daria B. Pavlova, Bridel V. Mongo56-59
-
METHODS OF PRODUCING APODIZED FIBER BRAGG GRATINGS AND EXAMPLES OF THEIR APPLICATIONS
Łukasz Zychowicz, Jacek Klimek, Piotr Kisała60-63
-
DEAD TIME MEASUREMENT BY TWO-SOURCE METHOD – OPTIMIZATION OF MEASUREMENT TIME DIVISION
Grzegorz Domański, Bogumił Konarzewski, Robert Kurjata, Krzysztof Zaremba, Janusz Marzec, Michał Dziewiecki, Marcin Ziembicki, Andrzej Rychter, Waldemar Smolik, Roman Szabatin, Piotr Brzeski64-66
-
ANALYSIS OF THE BENDING STRAIN INFLUENCE ON THE CURRENT- -VOLTAGE CHARACTERISTICS OF HTC SUPERCONDUCTING TAPES
Jacek Sosnowski67-70
-
DETERMINATION OF R = F(T) CHARACTERISTICS OF THE FIRST AND SECOND GENERATION SUPERCONDUCTING TAPES
Rafał Kwoka, Janusz Kozak, Michał Majka71-74
Archives
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
Main Article Content
DOI
Authors
Abstract
This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-similar time series of different nature.
Keywords:
References
Abry P., Flandrin P., Taqqu M.S., Veitch D.: Self-similarity and long-range dependence through the wavelet lens. Theory and applications of long-range dependence, Birkhäuser 2003.
Abry P., Veitch D.: Wavelet analysis of long-range dependent traffic. IEEE/ACM Transactions Information Theory, Vol. 1(44), 1998.
Bassingthwaighte J.B., Liebovitch L.S., West B.J.: Fractal Physiology. Oxford University Press, New York 1994.
Ching E.S.C., Tsang Yue-Kin : Multifractality and scale invariance in human heartbeat dynamics. Physical Review E, Vol. 76, 2007, 041910.
Clegg R.G.: A practical guide to measuring the Hurst parameter. Computing science technical report 2005. Vol. CS–TR–916.
Cont R., Tankov P.: Financial modelling with jump processes. Chapman & Hall CRC Press, 2004.
Czarkowski M., Kaczmarek S., Wolff M.: Influence of Self-Similar Traffic Type on Performance of QoS Routing Algorithms. INTL Journal of electronics and telecommunications, Vol. 62, no. 1, 2016, 81–87.
Feder J.: Fractals. Plenum, New York 1988.
Flandrin P., Gonzalves P., Abry P.: Scaling, Fractals and Wavelets. John Wiley & Sons, London 2009.
Harikrishnan K.P., Misra R., Ambika G: Can the multifractal spectrum be used as a diagnostic tool? Chaotic Modeling and Simulation, Vol. 1, 2013, 51–57.
Hurst H.E., Black R.P., Simaila Y.M.: Long-Term Storage: An Experimental Study. Constable, London 1965.
Kantelhardt J.W., Koscielny-Bunde E., Rego H.H.A., Havlin S., Bunde A.: Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 2001, 441–454.
Kantelhardt J.W.: Fractal and Multifractal Time Series. 2008. http://arxiv.org/abs/0804.0747 (available: 12.10.2017).
Kirichenko L., Deineko Zh.: Estimation of the self-similarity of stochastic time series by the wavelet analysis method. Radio-electronic and computer systems, Vol. 4 (38), 2009, 99–105.
Kirichenko L., Radivilova T., Deineko Zh.: Comparative Analysis for Estimating of the Hurst Exponent for Stationary and Nonstationary Time Series. Information Technologies & Knowledge, Vol. 5, No 4, 2011, 371–388.
Kirichenko L., Radivilova T.: Comparative analysis of statistical properties of the Hurst exponent estimates obtained by different methods. Information Models of Knowledg. ITHEA, Kiev–Sofia 2010.
Kirichenko L., Radivilova T.: Investigation of long-term dependence of network traffic using R / S-analysis. Automated control systems and automation devices, Vol. 135, 2006, 51–55.
Meléndez G.R.: The fractal nature of bitcoin: evidence from wavelet power spectra. Fundacion Universidad de las Americas Puebla 39, 2014. http://ssrn.com/abstract=2547281 (available: 12.10.2017).
Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1994, 1685–1689.
Peters E.E.: Fractal Market Analysis: applying chaos theory to investment and economics. Wiley, 2003.
Sheluhin O.I., Smolskiy S.M., Osin A.V.: Self-similar processes in telecommunications. JohnWiley & Sons Ltd, Chichester 2007.
Stollings W.: High-speed networks and Internets. Performance and quality of service. New Jersey 2002.
Tsugawa S., Ohsaki H.: Emergence of Fractals in Social Networks: Analysis of Community Structure and Interaction Locality. 38th Annual Computer Software and Applications Conference, 2014
Willinger W., Taqqu M.S., Erramilli A.A.: Bibliographical guide to self-similar traffic and performance modeling for modern high-speed network in ″Stohastic networks: theory and applications″. Claredon Press (Oxford University Press), Oxford 1996.
Article Details
Abstract views: 552
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
