APPLICATION CHAN-VESE METHODS IN MEDICAL IMAGE SEGMENTATION
Article Sidebar
Open full text
Issue Vol. 5 No. 4 (2015)
-
DEPARTMENT OF ELECTRICAL, CONTROL AND COMPUTER ENGINEERING, OPOLE UNIVERSITY OF TECHNOLOGY – DEVELOPMENT AND NEW CHALLENGES
Marian Łukaniszyn, Jan Sadecki3-6
-
THE FUZZY SYSTEM FOR RECOGNITION AND CONTROL OF THE TWO PHASE GAS-LIQUID FLOWS
Paweł Fiderek, Radosław Wajman, Jacek Kucharski7-11
-
FUZZY CLUSTERING OF RAW THREE DIMENSIONAL TOMOGRAPHIC DATA FOR TWO-PHASE FLOWS RECOGNITION
Paweł Fiderek, Tomasz Jaworski, Radosław Wajman, Jacek Kucharski12-15
-
CREATING ALGORITHM FOR SIMULATION OF FORMING FLAT WORKPIECES
Konstantin Solomonov, Sergey Lezhnev16-19
-
SITE OF ACTIVE PARTICIPANT IN THE ELECTRICITY MARKET
Przemysław Wanat, Dariusz Bober20-25
-
WIRELESS SENSOR PHYSICAL ACTIVITY BASED ON LOW-POWER PROCESSOR
Rafał Borowiec, Wojciech Surtel26-31
-
APPLICATION CHAN-VESE METHODS IN MEDICAL IMAGE SEGMENTATION
Paweł Prokop32-37
-
EFFECT OF HIGH VOLTAGE ON THE DEVELOPMENT OF THE PLANT TISSUE
Eliška Hutová, Petr Marcoň, Karel Bartušek38-41
-
ENVIRONMENTAL APPLICATION OF ELECTRICAL DISCHARGE FOR OZONE TREATMENT OF SOIL
Tomoya Abiru, Fumiaki Mitsugi, Tomoaki Ikegami, Kenji Ebihara, Shin-ichi Aoqui, Kazuhiro Nagahama42-44
-
MASSIVE SIMULATIONS USING MAPREDUCE MODEL
Artur Krupa, Bartosz Sawicki45-47
-
EFFICIENT CONVERSION OF ENERGY IN THE CONDITIONS OF TRIGENERATION OF HEAT, COOLING AND ELECTRIC POWER
Nadzeya Viktarovich48-51
-
ISOTROPY ANALYSIS OF METAMATERIALS
Arnold Kalvach, Zsolt Szabó52-54
-
A CONTROL UNIT FOR A PULSED NQR-FFT SPECTROMETER
Andriy Samila, Alexander Khandozhko, Ivan Hryhorchak, Leonid Politans’kyy, Taras Kazemirskiy55-58
-
THE INFLUENCE OF SIO2, TIO2 AND AL2O3 NANOPARTICLE ADDITIVES ON SELECTED PARAMETERS OF CONCRETE MIX AND SELF-COMPACTING CONCRETE
Paweł Niewiadomski59-61
-
FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS
Tomasz Pikula, Karol Kowal, Piotr Guzdek62-69
-
HIGH TEMPERATURE ANNEALING INFLUENCE ON ELECTRIC PROPERTIES OF NANOCOMPOSITE (FeCoZr)81.8(CaF2)18.2
Vitalii Bondariev, Tomasz Kołtunowicz70-76
-
INTERROGATION SYSTEMS FOR MULTIPLEXED FIBER BRAGG SENSORS
Damian Harasim, Piotr Kisała77-84
-
APPLICATION OF SEMICONDUCTOR GAS SENSORS ARRAY FOR CONTINUOUS MONITORING OF SEWAGE TREATMENT PROCESS REGULARITY
Łukasz Guz85-91
-
THE MODEL OF OBJECTS’ SORTING PROCESS BY USING NEURO APPROACH
Jaroslav Lotysz92-98
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
The article presents the problem of determining the edges of objects enclosed in a medical CT images, which will be subject to further analysis, for the purpose of medical diagnosis. The use of a transformation which introduces two-point thresholding, eliminates presenting pixels of objects for tissues that are not a subject to further analysis. This approach allowed us to sharpen the edges of objects presenting soft tissue. A way to detect the edge of the soft tissue was compared for the original image and processed one using the transformation using the method of Chan-Vese. Sharpening of edges of the image have improved the accuracy of detection of objects presenting the soft tissue.
Keywords:
References
Brox T., Weickert J.: Level Set Segmentation with Multiple Regions. Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University, Building 27.1, 66041 Saarbrücken, Germany, 2005.
Chan T. F., Vese L. A.: Active Contours Without Edges. IEEE Transactions on image processing, col. 10, No.2, February 2001.
Demirkaya O., Sahoo P. K.: Image Processing with MATLAB®; Applications in Medicine and Biology. CRC Press 2009.
Maciejewski M., Surtel W., Małecka-Massalska T.: Level-set image processing methods in medical image segmentation. NTAV/SPA 2012 – New Trends in Audio and Video sSignal Processing Algorithms, Architectures, Arrangements and Applications, 27-29 September 2012, Łódź, 2012.
Madhu S. N., Revathy K., Tatavarti R.: Removal of Salt-and Pepper Noise in Images: A New Decision-Based Algorithm. IMECS 2008, 19-21 March, 2008, Hong Kong, 2008.
Moelich M., Chan T.: Tracking objects with the Chan-Vese algorithm. Mathematics Department, UCLA, 405 Hilgard Avenue, Los Angeles, 2003.
Petrou M., Bosdogianni P.: Image Processing the Fundamentals, Wiley, London, 2004.
Pratt W. K.: Digital Image Processing, Wiley-Interscience, Los Altos, California, 2007.
Rumpf M., Strzodka R.: Level set segmentation in graphics hardware. University of Duisburg, Applied Mathematics, Lotharstr. 65, D-47048 Duisburg.
Salman N.: Image Segmentation and Edge Detection Based on Chan-Vese Algorithm” Computer Science Department, Zarqa Private Univesity, Jordan, 2006.
Tadeusiewicz R., Śmietański J.: Pozyskiwanie obrazów medycznych oraz ich pozyskiwanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja. WSTN, Kraków 2011.
Article Details
Abstract views: 294
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
