EFFECT OF HIGH VOLTAGE ON THE DEVELOPMENT OF THE PLANT TISSUE
Article Sidebar
Issue Vol. 5 No. 4 (2015)
-
DEPARTMENT OF ELECTRICAL, CONTROL AND COMPUTER ENGINEERING, OPOLE UNIVERSITY OF TECHNOLOGY – DEVELOPMENT AND NEW CHALLENGES
Marian Łukaniszyn, Jan Sadecki3-6
-
THE FUZZY SYSTEM FOR RECOGNITION AND CONTROL OF THE TWO PHASE GAS-LIQUID FLOWS
Paweł Fiderek, Radosław Wajman, Jacek Kucharski7-11
-
FUZZY CLUSTERING OF RAW THREE DIMENSIONAL TOMOGRAPHIC DATA FOR TWO-PHASE FLOWS RECOGNITION
Paweł Fiderek, Tomasz Jaworski, Radosław Wajman, Jacek Kucharski12-15
-
CREATING ALGORITHM FOR SIMULATION OF FORMING FLAT WORKPIECES
Konstantin Solomonov, Sergey Lezhnev16-19
-
SITE OF ACTIVE PARTICIPANT IN THE ELECTRICITY MARKET
Przemysław Wanat, Dariusz Bober20-25
-
WIRELESS SENSOR PHYSICAL ACTIVITY BASED ON LOW-POWER PROCESSOR
Rafał Borowiec, Wojciech Surtel26-31
-
APPLICATION CHAN-VESE METHODS IN MEDICAL IMAGE SEGMENTATION
Paweł Prokop32-37
-
EFFECT OF HIGH VOLTAGE ON THE DEVELOPMENT OF THE PLANT TISSUE
Eliška Hutová, Petr Marcoň, Karel Bartušek38-41
-
ENVIRONMENTAL APPLICATION OF ELECTRICAL DISCHARGE FOR OZONE TREATMENT OF SOIL
Tomoya Abiru, Fumiaki Mitsugi, Tomoaki Ikegami, Kenji Ebihara, Shin-ichi Aoqui, Kazuhiro Nagahama42-44
-
MASSIVE SIMULATIONS USING MAPREDUCE MODEL
Artur Krupa, Bartosz Sawicki45-47
-
EFFICIENT CONVERSION OF ENERGY IN THE CONDITIONS OF TRIGENERATION OF HEAT, COOLING AND ELECTRIC POWER
Nadzeya Viktarovich48-51
-
ISOTROPY ANALYSIS OF METAMATERIALS
Arnold Kalvach, Zsolt Szabó52-54
-
A CONTROL UNIT FOR A PULSED NQR-FFT SPECTROMETER
Andriy Samila, Alexander Khandozhko, Ivan Hryhorchak, Leonid Politans’kyy, Taras Kazemirskiy55-58
-
THE INFLUENCE OF SIO2, TIO2 AND AL2O3 NANOPARTICLE ADDITIVES ON SELECTED PARAMETERS OF CONCRETE MIX AND SELF-COMPACTING CONCRETE
Paweł Niewiadomski59-61
-
FREQUENCY DEPENDENCE OF THE MAGNETOELECTRIC VOLTAGE COEFFICIENT IN (BiFeO3)x-(BaTiO3)1-x CERAMICS
Tomasz Pikula, Karol Kowal, Piotr Guzdek62-69
-
HIGH TEMPERATURE ANNEALING INFLUENCE ON ELECTRIC PROPERTIES OF NANOCOMPOSITE (FeCoZr)81.8(CaF2)18.2
Vitalii Bondariev, Tomasz Kołtunowicz70-76
-
INTERROGATION SYSTEMS FOR MULTIPLEXED FIBER BRAGG SENSORS
Damian Harasim, Piotr Kisała77-84
-
APPLICATION OF SEMICONDUCTOR GAS SENSORS ARRAY FOR CONTINUOUS MONITORING OF SEWAGE TREATMENT PROCESS REGULARITY
Łukasz Guz85-91
-
THE MODEL OF OBJECTS’ SORTING PROCESS BY USING NEURO APPROACH
Jaroslav Lotysz92-98
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
In our experiment the electrical parameters that affect early somatic embryos (ESEs) were investigated. High voltage was generated by a special high voltage generator. High voltages ranging from 5 to 20 kV and frequency of 1 Hz were applied longitudinal and transversal directly on the Petri dish with 2 days old ESEs of Picea abies for periods of 3 hours every day. One Petri dish was placed directly on top of the high voltage generator and on the other Petri dish were fixed two copper plates for transmission of high voltage. Petri dishes were exposed to high voltage for 14 days. After this time, the influence of high voltage was evaluated. To evaluate the experiment were used biological and chemical methods, which confirmed the changes in the growth of ESEs.
Keywords:
References
Blackman V. H., Legg A. T.: Pot culture experiments with an electric discharge. J. Agric. Sci. 14, 1924, 268–273.
Blackman V. H.: Field experiments in electroculture. J. Agric. Sci. 14, 1924, 240–267.
Chiabrera A., Bianco B.: The role of the magnetic field in the EM interaction with the ligand binding. Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. 1987, 79–95.
Conti R., Nicolini P., Cerretelli P., Margonato V., Veicsteinas A., Floris C.: ENEL’s research activity on possible biological effects of 50 Hz electro-magnetic fields – Results and plans of a large research programme. Alta Freq 58, 1989, 395–402.
Davies M. S.: Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics 17, 1996, 154–161.
Ellis H., Turner E. R.: The effects of electricity on plant growth. Sci. Pro. Oxf. 65, 1978, 395–407.
Goldsworthy A.: Electrostimulation of cells by weak electric currents. Electrical manipulation of cells. New York: Chapman & Hall. 1996, 249–272.
Hepler P. K., Wayne R.: Calcium and plant cell development. Ann Rev Plant Physiol 38, 1985, 397–439.
Hodges T. K., Mitchell C. A.: Influence of High Intensity Electric Fields on Yield of Sweet Corn and Dent Corn 1982. American Electric Power Service Corporation, North Liberty, Indiana, 1984.
Jones D., McLeod B.: Electromagnetic cell stimulation. In: Electrical manipulation of cells. New York: Chapman & Hall. 1996, 223–247.
Karcz W., Burdach Z.: The effects of electric field on the growth of intact seedling and coleoptile segments of Zea mays L. Biol. Plant 37, 1995, 391–397.
Lednev L. L.: Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12, 1990, 71–75.
Liboff A. R., McLeod B. R.: Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9, 1987, 39–51.
Marcon, P., Fiala, P., Steinbauer, M., Cap, M.: Special High Voltage Function Generator. PIERS ONLINE vol. 7, num. 6., 2011, 547-550.
Müller A.: Mögliche Auswirkungen elektromagnetischer Felder auf die Vegetation. Diploma paper, Agricultural University Vienna, 1990.
Phirke P. S., Kubde A. B., Umbarkar S. P.: 1996. The influence of magnetic field on plant growth. Seed. Sci. Technol. 24, 1996, 375–392.
Plätzer K., Obermeyer G., Bentrup F.W.: AC fields of low frequency and amplitude stimulate pollen tube growth possibly, 1996.
Potts M. D., Parkinson W. C., Nooden L. D.: Raphanus sativus and electromagnetic fields. Bioelectrochem Bioenerg 44, 1997, 131–140.
Raleigh R. J.: Joint HVDC Agricultural Study: Final Report. Oregon State University, Portland, Oregon, 1988.
Rathore K. S., Goldsworthy A.: Electrical control of shoot regeneration in plant tissue cultures. Bio. Technol. 3, 1985, 1107– 1109.
Rogers L. E., Beedlow P. A., Carlile D. W., Gano K. A.: Environmental Studies of a 1100 kV Prototype Transmission Line. An Annual Report for the 1983 Study Period. Batelle Pacific Northwest Laboratories, Portland, Oregon, 1984.
Schnepf E.: Cellular polarity. Ann. Rev. Plant. Physiol. 37, 1986, 23–47.
Smith S. D., McLeod B. R., Liboff A. R., Cooksey K. E.: Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8, 1987, 215–227.
Vlachova Hutova, E., Bartusek, K., Fiala, P.: The Influence of a Magnetic Field on the Behaviour of the Quantum Mechanical Model of Matter. In PIERS 2014 Guangzhou Proceedings. Progress in Electromagnetics, 2014, 1847–1851.
Vlachova Hutova, E., Bartusek, K., Mikulka, J.: Study of the Influence of Magnetic Fields on Plants Tissues. In Proceedings of PIERS 2013 in Taipei. Progress in Electromagnetics, 2013, 57–60.
Zhang H., Hashinaga F.: Effects of high electric fields on the germination and early growth of some vegetable seeds. J. Jpn. Soc. Hort. Sci. 66, 1997, 347–352.
Article Details
Abstract views: 273
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
