EMG FIELD ANALYSIS IN DYNAMIC MICROSCOPIC/NANOSCOPIC MODELS OF MATTER
Pavel Fiala
fialap@feec.vutbr.czSIX Research Center, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-7203-9903
Karel Bartušek
Institute of Scientific Instruments of the ASCR v.v.i. (Czechia)
http://orcid.org/0000-0002-6598-5424
Jarmila Dědková
Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-7919-0489
Premysl Dohnal
Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0003-1163-4458
Abstract
We discuss a numerical model (macro/micro/nanoscopic) to enable more accurate analysis of electro-hydro-dynamic (EMHD) processes
in water at the level of atoms. Dedicated experiments have shown that inserting a relatively homogeneous periodic structure (deionized, degassed,
or distilled H2O) in a magnetic field will influence the atomic basis, molecules, and relevant bonds. In this context, the present paper focuses
on the designing, analysis, and evaluation of the behavior of an extensive system that represents H2O from the microscopic perspective, and it also outlines the properties and changes of the bonds in the examined water samples. Complementarily, a simple example is used to define the results obtained
from analyses of the generated spiral static gradient magnetic and non-stationary gradient electromagnetic fields from the frequency range of f = 1 GHz
to 10 GHz.
Keywords:
multiscaling, modeling, water, cluster, atoms, molecules, structure, matter, low-level measurementReferences
ANSYS, Ansys Multiphysics Manuals, Ansys,(1994–2018), Houston, USA.
Google Scholar
Bakker H.J., Kropman M.F., Omta A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. Condensed Matter 17/2005, 3215–3224.
Google Scholar
Bartušek K., Fiala P., Mikulka J.: Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 17(4)/2008, 113–118.
Google Scholar
Bartušek K., Gescheidtová E., Mikulka J.: Data Processing in Studying Biological Tissues, Using MR Imaging Techniques. 33 th International Conference on Telecommunications and Signal Processing. Budapešť: Asszisztenda Szervezo, 2010, 171–175.
Google Scholar
Bartušek K., Marcoň P., Fiala P., Máca J., Dohnal P.: The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water. Water 9(9)/2017, 1–8.
Google Scholar
Chaplin M.: http://www1.lsbu.ac.uk/water/water_structure_science.html.
Google Scholar
Chaplin M.F.: A proposal for the structuring of water. Biophysical Chemistry 83/1999, 211–221.
Google Scholar
Clary D. C.: Quantum dynamics in the smallest water droplet. Science 351/2016, 1267–1268.
Google Scholar
Cole W. T. S., Farrell J. D., Wales D. J., Saykally R. J.: Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science 352/2016, 1194–1197.
Google Scholar
Drexler P., Fiala P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies 18(7,8)/2012, 1181–1192.
Google Scholar
Drexler P., Kadlec R., Bartušek K., Fiala P., Kubásek R.: Magnetoinductive Lens for Experimental Mid- field MR Tomograph. In Proceedings of PIERS 2010 in Cambridge. Cambridge 2010, 1047–1050.
Google Scholar
Elia V., Marchettini N., Napoli E., Tiezzi E.: Nanostructures of Water Molecules in Iteratively Filtered Water. Water 7/2016, 147–157.
Google Scholar
Elia V., Niccoli M.: New physico-chemical properties of water induced by mechanical treatments. J. Therm. Anal. Calor. 61/2000, 527–537.
Google Scholar
Fiala P., Friedl M.: Application of an Electromagnetic Numerical Model in Accurate Measurement of High Velocities. IAPGOS 3/2015, 3–10.
Google Scholar
Fiala P., Jirků T., Gescheidtová E.: Tuned Structures for Special THz Applications. Proceedings of the Progress In Electromagnetics Research symposium. Cambridge The electromagnetics academy 2009, 151–155.
Google Scholar
Fiala P.: Pulse- powered virtual cathode oscillator. Transactions on Dielectrics and Electrical Insulation 18(4)/2011, 1046–1053.
Google Scholar
Frank H. S., Wen W.-Y.: Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Faraday Discussions 24/1957, 133–140.
Google Scholar
Goncharuk V. V., Kavitskaya A. A., Romanyukina I. Y., Loboda O. A.: Revealing water’s secrets: deuterium depleted water. Chemistry Central Journal 7/2013, 103.
Google Scholar
Hansen T. C., Falenty A., Kuhs W. F.: Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data, in Physics and Chemistry of Ice, ed. W. Kuhs. Royal Society of Chemistry, Cambridge, 2007, 201–208.
Google Scholar
Ignatov I., Mosin O.: Structural Mathematical Models Describing Water Clusters. Mathematical Theory and Modeling 3(11)/2013.
Google Scholar
Ikeshoji T., Aihara T., Ohno K., Kawazoe Y.: Ab-initio Molecular Dynamics Simulation of Water Clusters. Sci. Rep. RITU A41/1996, 175–182.
Google Scholar
Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M. 42/2015, 179–187.
Google Scholar
Krishnan M., Verma A., Balasubramanian S.: Proc. Indian Acad. Sci. (Chem. Sci.) 113(5,6)/2001, 579–590.
Google Scholar
Kuhs W. F., Sippel C., Falenty A., Hansen T. C.: Extent and relevance of stacking disorder in “ice Ic”. Proceedings of the National Academy of Sciences 109/2012, 21259–21264.
Google Scholar
Malkin T. L., Murray B. J., Brukhno A. V., Anwar J., Salzmann C. G.: Structure of ice crystallized from supercooled water. Proceedings of the National Academy of Sciences 109/2012, 1041–1045.
Google Scholar
Malkin T. L., Murray B. J., Salzmann C. G., Molinero V., Pickering S. J., Whale T. F.: Stacking disorder in ice I. Physical Chemistry Chemical Physics 17/2015, 60–76.
Google Scholar
Marcoň P., Bartušek K., Mikulka J., Čáp M.: Magnetic susceptibility modelling using ANSYS. Progress In Electromagnetics 2011, 190–193.
Google Scholar
Moore E. B., Molinero V.: Is it cubic? Ice crystallization from deeply supercooled water. Physical Chemistry Chemical Physics 13/2011, 20008–20016.
Google Scholar
Mootz D., Seidel R.: Polyhedral clathrate hydrates of a strong base: phase relations of crystal structures in the system tetramethylammonium hydroxide-water. J. Inclusion Phenomena 8/1990, 139–157.
Google Scholar
Muscia R.: Equivalent magnetic charge in helicoidal magnets. J. Appl. Phys. 104/2008, 103916.
Google Scholar
Ohmine I., Tanaka H.: Chem. Rev. 93/1993, 2545.
Google Scholar
Perera A., Mazighi R., Kežíc B.: Fluctuations and micro-heterogeneity in aqueous mixtures. Journal of Chemical Physics 136/2012, 174516.
Google Scholar
Perera A.: On the microscopic structure of liquid water. Molecular Physics 109/2011, 2433–2441.
Google Scholar
Rahman A., Stillinger F. H.: J. Chem. Phys. 55/1971, 3336.
Google Scholar
Richardson J. O., Pérez C., Lobsiger S., Reid A. A., Temelso B., Shields G. C., Kisiel Z., Wales D. J., Pate B. H., Althorpe S. C.: Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351/2016, 1310–1313.
Google Scholar
Shelton D. P.: Long-range orientation correlation in water. Journal of Chemical Physics 141/2014, 224506.
Google Scholar
Stratton J. A.: Electromagnetic field theory. SNTL, Praha 1961.
Google Scholar
Vlachová Hutová E., Bartušek K., Dohnal P., Fiala P.: The Influence of a Static Magnetic Field on the Behavior of a Quantum Mechanical Model of Matter. Measurement, Journal of the International Measurement Confederation (IMEKO) 96/2017, 18–23.
Google Scholar
Vostrikov A.A., Drozdov S.V., Rudnev V.S., Kurkina L.I.: Molecular dynamics study of neutral and charged water clusters. Computational Materials Science 35/2006, 254–260.
Google Scholar
Weisstein E.W.: Galerkin Method, MathWorld, 28 March 2015, http://mathworld.wolfram.com/GalerkinMethod.html. 1 April 2015.
Google Scholar
Authors
Pavel Fialafialap@feec.vutbr.cz
SIX Research Center, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-7203-9903
Authors
Karel BartušekInstitute of Scientific Instruments of the ASCR v.v.i. Czechia
http://orcid.org/0000-0002-6598-5424
Authors
Jarmila DědkováBrno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-7919-0489
Authors
Premysl DohnalBrno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0003-1163-4458
Statistics
Abstract views: 265PDF downloads: 190
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Miloslav Steinbauer, Roman Pernica, Jiri Zukal, Radim Kadlec, Tibor Bachorec, Pavel Fiala, MODELING ELECTROMAGNETIC NANOSTRUCTURES AND EXPERIMENTING WITH NANOELECTRIC ELEMENTS TO FORM PERIODIC STRUCTURES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 10 No. 4 (2020)
- Pavel Krepelka, Fernando Pérez-Rodríguez, Karel Bartusek, BACTERIAL PATTERN IDENTIFICATION IN NEAR-INFRARED SPECTRUM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 4 No. 3 (2014)
- Pavel Fiala, Martin Friedl, APPLICATION OF AN ELECTROMAGNETIC NUMERICAL MODEL IN ACCURATE MEASUREMENT OF HIGH VELOCITIES , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 3 (2015)
- Eliška Hutová, Petr Marcoň, Karel Bartušek, EFFECT OF HIGH VOLTAGE ON THE DEVELOPMENT OF THE PLANT TISSUE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 4 (2015)