EMG FIELD ANALYSIS IN DYNAMIC MICROSCOPIC/NANOSCOPIC MODELS OF MATTER

Pavel Fiala

fialap@feec.vutbr.cz
SIX Research Center, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-7203-9903

Karel Bartušek


Institute of Scientific Instruments of the ASCR v.v.i. (Czechia)
http://orcid.org/0000-0002-6598-5424

Jarmila Dědková


Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0002-7919-0489

Premysl Dohnal


Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering (Czechia)
http://orcid.org/0000-0003-1163-4458

Abstract

We discuss a numerical model (macro/micro/nanoscopic) to enable more accurate analysis of electro-hydro-dynamic (EMHD) processes
in water at the level of atoms. Dedicated experiments have shown that inserting a relatively homogeneous periodic structure (deionized, degassed,
or distilled H2O) in a magnetic field will influence the atomic basis, molecules, and relevant bonds. In this context, the present paper focuses
on the designing, analysis, and evaluation of the behavior of an extensive system that represents H2O from the microscopic perspective, and it also outlines the properties and changes of the bonds in the examined water samples. Complementarily, a simple example is used to define the results obtained
from analyses of the generated spiral static gradient magnetic and non-stationary gradient electromagnetic fields from the frequency range of f = 1 GHz
to 10 GHz.


Keywords:

multiscaling, modeling, water, cluster, atoms, molecules, structure, matter, low-level measurement

ANSYS, Ansys Multiphysics Manuals, Ansys,(1994–2018), Houston, USA.
  Google Scholar

Bakker H.J., Kropman M.F., Omta A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys. Condensed Matter 17/2005, 3215–3224.
  Google Scholar

Bartušek K., Fiala P., Mikulka J.: Numerical Modeling of Magnetic Field Deformation as Related to Susceptibility Measured with an MR System. Radioengineering 17(4)/2008, 113–118.
  Google Scholar

Bartušek K., Gescheidtová E., Mikulka J.: Data Processing in Studying Biological Tissues, Using MR Imaging Techniques. 33 th International Conference on Telecommunications and Signal Processing. Budapešť: Asszisztenda Szervezo, 2010, 171–175.
  Google Scholar

Bartušek K., Marcoň P., Fiala P., Máca J., Dohnal P.: The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water. Water 9(9)/2017, 1–8.
  Google Scholar

Chaplin M.: http://www1.lsbu.ac.uk/water/water_structure_science.html.
  Google Scholar

Chaplin M.F.: A proposal for the structuring of water. Biophysical Chemistry 83/1999, 211–221.
  Google Scholar

Clary D. C.: Quantum dynamics in the smallest water droplet. Science 351/2016, 1267–1268.
  Google Scholar

Cole W. T. S., Farrell J. D., Wales D. J., Saykally R. J.: Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm. Science 352/2016, 1194–1197.
  Google Scholar

Drexler P., Fiala P.: Power supply sources based on resonant energy harvesting. Microsystem Technologies 18(7,8)/2012, 1181–1192.
  Google Scholar

Drexler P., Kadlec R., Bartušek K., Fiala P., Kubásek R.: Magnetoinductive Lens for Experimental Mid- field MR Tomograph. In Proceedings of PIERS 2010 in Cambridge. Cambridge 2010, 1047–1050.
  Google Scholar

Elia V., Marchettini N., Napoli E., Tiezzi E.: Nanostructures of Water Molecules in Iteratively Filtered Water. Water 7/2016, 147–157.
  Google Scholar

Elia V., Niccoli M.: New physico-chemical properties of water induced by mechanical treatments. J. Therm. Anal. Calor. 61/2000, 527–537.
  Google Scholar

Fiala P., Friedl M.: Application of an Electromagnetic Numerical Model in Accurate Measurement of High Velocities. IAPGOS 3/2015, 3–10.
  Google Scholar

Fiala P., Jirků T., Gescheidtová E.: Tuned Structures for Special THz Applications. Proceedings of the Progress In Electromagnetics Research symposium. Cambridge The electromagnetics academy 2009, 151–155.
  Google Scholar

Fiala P.: Pulse- powered virtual cathode oscillator. Transactions on Dielectrics and Electrical Insulation 18(4)/2011, 1046–1053.
  Google Scholar

Frank H. S., Wen W.-Y.: Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Faraday Discussions 24/1957, 133–140.
  Google Scholar

Goncharuk V. V., Kavitskaya A. A., Romanyukina I. Y., Loboda O. A.: Revealing water’s secrets: deuterium depleted water. Chemistry Central Journal 7/2013, 103.
  Google Scholar

Hansen T. C., Falenty A., Kuhs W. F.: Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data, in Physics and Chemistry of Ice, ed. W. Kuhs. Royal Society of Chemistry, Cambridge, 2007, 201–208.
  Google Scholar

Ignatov I., Mosin O.: Structural Mathematical Models Describing Water Clusters. Mathematical Theory and Modeling 3(11)/2013.
  Google Scholar

Ikeshoji T., Aihara T., Ohno K., Kawazoe Y.: Ab-initio Molecular Dynamics Simulation of Water Clusters. Sci. Rep. RITU A41/1996, 175–182.
  Google Scholar

Kadlec R., Fiala P.: The Response of Layered Materials to EMG Waves from a Pulse Source. Progress In Electromagnetics Research M. 42/2015, 179–187.
  Google Scholar

Krishnan M., Verma A., Balasubramanian S.: Proc. Indian Acad. Sci. (Chem. Sci.) 113(5,6)/2001, 579–590.
  Google Scholar

Kuhs W. F., Sippel C., Falenty A., Hansen T. C.: Extent and relevance of stacking disorder in “ice Ic”. Proceedings of the National Academy of Sciences 109/2012, 21259–21264.
  Google Scholar

Malkin T. L., Murray B. J., Brukhno A. V., Anwar J., Salzmann C. G.: Structure of ice crystallized from supercooled water. Proceedings of the National Academy of Sciences 109/2012, 1041–1045.
  Google Scholar

Malkin T. L., Murray B. J., Salzmann C. G., Molinero V., Pickering S. J., Whale T. F.: Stacking disorder in ice I. Physical Chemistry Chemical Physics 17/2015, 60–76.
  Google Scholar

Marcoň P., Bartušek K., Mikulka J., Čáp M.: Magnetic susceptibility modelling using ANSYS. Progress In Electromagnetics 2011, 190–193.
  Google Scholar

Moore E. B., Molinero V.: Is it cubic? Ice crystallization from deeply supercooled water. Physical Chemistry Chemical Physics 13/2011, 20008–20016.
  Google Scholar

Mootz D., Seidel R.: Polyhedral clathrate hydrates of a strong base: phase relations of crystal structures in the system tetramethylammonium hydroxide-water. J. Inclusion Phenomena 8/1990, 139–157.
  Google Scholar

Muscia R.: Equivalent magnetic charge in helicoidal magnets. J. Appl. Phys. 104/2008, 103916.
  Google Scholar

Ohmine I., Tanaka H.: Chem. Rev. 93/1993, 2545.
  Google Scholar

Perera A., Mazighi R., Kežíc B.: Fluctuations and micro-heterogeneity in aqueous mixtures. Journal of Chemical Physics 136/2012, 174516.
  Google Scholar

Perera A.: On the microscopic structure of liquid water. Molecular Physics 109/2011, 2433–2441.
  Google Scholar

Rahman A., Stillinger F. H.: J. Chem. Phys. 55/1971, 3336.
  Google Scholar

Richardson J. O., Pérez C., Lobsiger S., Reid A. A., Temelso B., Shields G. C., Kisiel Z., Wales D. J., Pate B. H., Althorpe S. C.: Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351/2016, 1310–1313.
  Google Scholar

Shelton D. P.: Long-range orientation correlation in water. Journal of Chemical Physics 141/2014, 224506.
  Google Scholar

Stratton J. A.: Electromagnetic field theory. SNTL, Praha 1961.
  Google Scholar

Vlachová Hutová E., Bartušek K., Dohnal P., Fiala P.: The Influence of a Static Magnetic Field on the Behavior of a Quantum Mechanical Model of Matter. Measurement, Journal of the International Measurement Confederation (IMEKO) 96/2017, 18–23.
  Google Scholar

Vostrikov A.A., Drozdov S.V., Rudnev V.S., Kurkina L.I.: Molecular dynamics study of neutral and charged water clusters. Computational Materials Science 35/2006, 254–260.
  Google Scholar

Weisstein E.W.: Galerkin Method, MathWorld, 28 March 2015, http://mathworld.wolfram.com/GalerkinMethod.html. 1 April 2015.
  Google Scholar

Download


Published
2019-03-03

Cited by

Fiala, P., Bartušek, K., Dědková, J., & Dohnal, P. (2019). EMG FIELD ANALYSIS IN DYNAMIC MICROSCOPIC/NANOSCOPIC MODELS OF MATTER. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(1), 4–10. https://doi.org/10.5604/01.3001.0013.0877

Authors

Pavel Fiala 
fialap@feec.vutbr.cz
SIX Research Center, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-7203-9903

Authors

Karel Bartušek 

Institute of Scientific Instruments of the ASCR v.v.i. Czechia
http://orcid.org/0000-0002-6598-5424

Authors

Jarmila Dědková 

Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0002-7919-0489

Authors

Premysl Dohnal 

Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Theoretical and Experimental Electrical Engineering Czechia
http://orcid.org/0000-0003-1163-4458

Statistics

Abstract views: 273
PDF downloads: 195