In this article the motion control system of autonomous mobile robot is described. Four motion modes: motion mode “to the target”, motion mode “obstacles avoidance”, motion mode “along the right wall” and motion mode “along the left wall” are implemented. A method for determining the effective rotation angle of mobile robot which is a linear combination of rotation angles which are obtained in different motion modes and activation coefficients is proposed. Fuzzy-oriented method with high accuracy and performance is used for motion modes implementation and for finding values of activation coefficients.


mobile robot; motion control system; fuzzy logic; linear regression

Arena P., Fortuna L., Frasca M., Patané L., Pavone M.: Towards autonomous adaptive behavior in a bio-inspired CNN-controlled robot, Proceedings of the IEEE International Symposium on Circuits and Systems ISCAS 2006.

Benbouabdallah K., Qi-dan Z.: A Fuzzy Logic Behavior Architecture Controller for a Mobile Robot Path Planning in Multi-obstacles Environment Research, Journal of Applied Sciences, Engineering and Technology, 5(14), 2013, 3835-3842.

Cherroun L., Boumehraz M.: Designing of Goal Seeking and Obstacle Avoidance Behaviors for a Mobile Robot Using Fuzzy Techniques, J. Automation & Systems Engineering, 6-4, 2012, 164-171.

Chonnaparamutt W., Birk A.: A Fuzzy Controller for Autonomous Negotiation of Stairs by a Mobile Robot with Adjustable Tracks, RoboCup 2007: Robot WorldCup XI, Lecture Notes in Articial Intelligence (LNAI), Springer, 2008.

Cruz D., McClintock J., Perteet B., Orqueda O., Cao Y., Fierro R.: Decentralized cooperative control: A multivehicle platform for research in networked embedded systems, IEEE Contr. Syst. Mag., vol. 27, no. 3, 2007, 58–78.

Egerstedt M.: Control of Autonomous Mobile Robots, Birkhäuser, Cambridge 2005.

Grassi V. J., Parikh S. P., Okamoto Junior J.: Hybrid Delibera-Tive/Reactive Architecture For Human-Robot Interac-Tion, ABSM Symposium Series in Mechtronics, Vol. 2, 2006, 563-570.

Korsunskiy V. A.: Povysheniye effektivnosti mobil'nykh robotov putem ispol'zovaniya dopolnitel'nogo istochnika energosnabzheniya – makhovichnogo akkumulyatora energii, Nauka i obrazovaniye, No. FS77-48211/2013, 125-134, (in Russian) DOI: 10.7463/0513.0566233.

Leyden M, Toal D., Flanagan C.: A Fuzzy Logic Based Navigation System for a mobile Robot, Automatisierungs symposium Wismar, 1999.

Nakhaeinia D., Tang S. H., Mohd Noor S. B., Motlagh O.: A review of control architectures for autonomous navigation of mobile robots, International Journal of the Physical Sciences, Vol. 6(2), 2011, 169-174.

Nattharith P.: Fuzzy logic based control of mobile robot navigation: A case study on iRobot Roomba Platform, Scientific Research and Essays, Vol. 8(2), 2013, 82-94.

Nazari D., Abadi M., Khooban M.H.: Design of optimal Mamdani-type fuzzy controller for nonholonomic wheeled mobile robots, Journal of King Saud University–Engineering Sciences, 05/2013, 1-9.

Senthilkumar K. S.: A Study of Behavior-based and Role-based Autonomous Multi-Robot Exploration and Coverage Systems, International Journal of Latest Research In Engineering and Computing (IJLREC), Vol. 1/2013, 12-20.

Tkatchenko O.: Rule-based Fuzzy System of Improved Accuracy, Conference proceedings: 56th International Scientific Colloquium (IWK): Innovation in Mechanical Engineering - Shaping the Future, 2011.

Tkatchenko O.: T-Controller Workshop User Manual: Sapienware Corporation, 2011.

Yegorov I.N., Kadkhim D.A.: Primeneniye mobil'nykh robotov pri vnutritrubnoy diagnostike truboprovodov s peremennym poperechnym secheniyem, Neftegazovoye delo, No. 3, 2011, 73-83 (in Russian).


Published : 2014-12-09

Tsmots, I., Vavruk, I., & Tkachenko, R. (2014). MOTION CONTROL SYSTEM OF AUTONOMOUS MOBILE ROBOT. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 4(4), 89-93.

Ivan Tsmots
Lviv Polytechnic National University  Ukraine
Iryna Vavruk 
Lviv Polytechnic National University  Ukraine
Roman Tkachenko 
Lviv Polytechnic National University  Ukraine