A CRITICAL REVIEW OF MODELS USED IN NUMERICAL SIMULATION OF ELECTROSTATIC PRECIPITATORS
Feng Zhuangbo
fengzb@tju.edu.cnWestern University, Department of Electrical and Computer Engineering; Tianjin University, School of Environmental Science and Engineering (China)
Zhengwei Long
Tianjin University, School of Environmental Science and Engineering (China)
Kazimierz Adamiak
Western University, Department of Electrical and Computer Engineering (Canada)
Abstract
The electrostatic precipitators (ESP) have been drawing more and more attention due to their high efficiency and low costs. Numerical simulation is a powerful, economical and flexible tool to design ESP for industry applications. This review summarizes the available numerical models to simulate different physical processes in ESP, including ionized electric field, air flow, particle charging and motion. It has been confirmed that the available models could provide acceptable results and the computing requirements are affordable in industry applications. The coupling between different physical processes can also be considered in simulation. However, there are still some problems not solved, such as selection of a suitable turbulence model in EHD simulation and the coupling criteria. The future study should focus on these issues. This review also includes new types of ESP developed in recent years, such as dielectric barrier discharge (DBD) ESP and corona assisted fibrous filter. These new types of ESP have had high efficiency and low energy consumption. Even though nearly all new ESP types can be modeled using the available numerical models, the most challenging issue is the DBD simulation.
Keywords:
particle precipitation, numerical simulation, corona discharge, DBD dischargeReferences
Adamiak K., Atten P.: Numerical simulation of the 2-D gas flow modified by the action of charged fine particles in a single-wire ESP. IEEE Transactions on Dielectrics and Electrical Insulation 6/2009, 608–614, [DOI: 10.1109/TDEI.2009.5128495].
Google Scholar
Adamiak K., Atten P.: Simulation of corona discharge in point–plane configuration. Journal of Electrostatics 6/2004, 85–98, [DOI: 10.1016/j.elstat.2004.01.021].
Google Scholar
Adamiak K.: Numerical models in simulating wire-plate electrostatic precipitators: A review. Journal of Electrostatics 8/2013, 673–680, [DOI:10.1016/j.elstat.2013.03.001].
Google Scholar
Adamiak K.: Simulation of corona in wire-duct electrostatic precipitator by means of the boundary element method. IEEE Transactions on Industry Applications 3/1994, 381–386, [DOI: 10.1109/28.287519].
Google Scholar
Chen C., Liu W., Li F., Lin C., Liu J., Pei J., Chen, Q.: A hybrid model for investigating transient particle transport in enclosed environments. Building Environment 1/2013, 45–54, [DOI: 10.1016/j.buildenv.2012.12.020].
Google Scholar
Chen T., Tsai C., Yan J., Tran T., Li N.: An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Separation and Purification Technology 11/2014, 27–35, [DOI: 10.1016/j.seppur.2014.08.032].
Google Scholar
Choi B., Fletcher, C.: Turbulent particle dispersion in an electrostatic precipitator. Applied Mathematical Modeling 12/1998, 1009–1021, [DOI:10.1016/S0307-904X(98)10034-3].
Google Scholar
Chun Y., Chang J., Berezin A., Mizeraczyk J.: Numerical modeling of near corona wire electrohydrodynamic flow in a wire-plate electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 2/2007, 119–124, [DOI:10.1109/TDEI.2007.302879].
Google Scholar
Delfino J., Sioutas C., Malik, S.: Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives 8/2005, 934–946, [DOI: 10.1289/ehp.7938].
Google Scholar
Dordizadeh P., Adamiak K., Castle, G.S.P.: Numerical investigation of the formation of Trichel pulses in a needle-plane geometry. Journal of Physics D: Applied Physics 8/2015, 1–13, [DOI:10.1088/0022-3727/48/41/415203].
Google Scholar
Dramane B., Zouzou N., Moreau E., Touchard, G.: Electrostatic precipitation of submicron particles using a DBD in axisymmetric and planar configurations. IEEE Transactions on Dielectrics and Electrical Insulation 4/2009, 343–351, [DOI: 10.1109/TDEI.2009.4815162].
Google Scholar
Farnoosh N., Adamiak K., Castle, G.S.P.: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. Journal of Electrostatics 12/2010, 513–522, [DOI: 10.1016/j.elstat.2010.07.002].
Google Scholar
Farnoosh N., Adamiak K., Castle, G.S.P.: 3-D numerical simulation of particle concentration effect on a single-wire ESP performance for collecting poly-dispersed particles. IEEE Transactions on Dielectrics and Electrical Insulation 2/2011, 211–220, [DOI:10.1109/TDEI.2011.5704512].
Google Scholar
Farnoosh N., Adamiak K., Castle, G.S.P.: Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 10/2011, 1439–1452, [DOI: 10.1109/TDEI.2011.6032814].
Google Scholar
Farnoosh N., Adamiak K., Castle, G.S.P.: Three-dimensional analysis of electrohydrodynamic flow in a spiked electrode-plate electrostatic precipitator. Journal of Electrostatics 10/2011, 419–428, [DOI: 10.1016/j.elstat.2011.06.002].
Google Scholar
Feng Z., Long Z., Mo J.: Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine particles. Journal of Aerosol science 12/2016, 41–54, [DOI: 10.1016/j.jaerosci.2016.08.012].
Google Scholar
Feng Z., Long Z., Yu, T.: Filtration characteristics of fibrous filter following an electrostatic precipitator. Journal of Electrostatics 10/2016, 52–62, [DOI:10.1016/j.elstat.2016.07.009].
Google Scholar
Fuchs N.: On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure and Applied Geophysics 9/1963, 185–193, [DOI: 10.1007/BF01993343].
Google Scholar
Ghazanchaei M., Adamiak K., Castle G.S.P.: Predicted flow characteristics of a wire-nonparallel plate type electrohydrodynamic gas pump using the Finite Element Method. Journal of Electrostatics 73/2015, 103–111, [DOI: 10.1016/j.elstat.2014.11.003].
Google Scholar
Guo B., Yu A., Guo J.: Numerical modeling of electrostatic precipitation: Effect of gas temperature. Journal of Aerosol science 11/2014, 102–115, [DOI: 10.1016/j.jaerosci.2014.07.009].
Google Scholar
Jaworek A., Krupa A., Adamiak K.: Submicron charged dust particle interception by charged drops. IEEE Transactions on Industry Applications 8/2002, 985–991, [DOI: 0.1109/28.720438].
Google Scholar
Kherbouche F., Benmimoun Y., Tilmatine A., Zouaghi A., Zouzou, N.: Study of a new electrostatic precipitator with asymmetrical wire-to-cylinder cofiguration for cement particles collection. Journal of Electrostatics 10/2016, 7–15, [DOI: 10.1016/j.elstat.2016.07.001].
Google Scholar
Kihm K.: Effects of nonuniformities on particle transport in electrostatic precipitators. 1987, Ph.D. dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA.
Google Scholar
Kim H., Han B., Kim Y., Oda T., Won, H.: Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions and carbon fiber ionizer. Indoor Air 10/2013, 369–378, [DOI: 10.1111/ina.12037].
Google Scholar
Lancereau Q., Roux J., Achard J.: Electrohydrodynamic flow regimes in a cylindrical electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation 8/2013, 1409–1420, [DOI:10.1109/TDEI.2013.6571463].
Google Scholar
Lei H., Wang L., Wu, Z.: EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator. Journal of Electrostatics 3/2008, 130–141, [DOI: 10.1016/j.elstat.2007.11.001].
Google Scholar
Lelieveld J., Evans S., Fnais M., Giannadaki D., Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 9/2015, 367–371, [DOI:10.1038/nature15371].
Google Scholar
Li Z., Liu Y., Xing Y., Tran T., Le T., Tsai C.: Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environmental Science & Technology 7/2015, 8683–8690, [DOI: 10.1021/acs.est.5b01844].
Google Scholar
Li Z., Liu Y., Xing Y., Tran T., Le T., Tsai C.: Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environmental Science & Technology, 7/2015, 8683–8690, [DOI: 10.1021/acs.est.5b01844].
Google Scholar
Liang W., Lin T.: The characteristics of ionic wind and its effect on electrostatic precipitator. Aerosol Science & Technology 2/1994, 330–344, [DOI: 10.1080/02786829408959689].
Google Scholar
Lin G., Tsai C.: Numerical modeling of nanoparticle collection efficiency of single-stage wire-in-plate electrostatic precipitators. Aerosol Science & Technology 10/2010, 1122–1130, [DOI: 10.1080/02786826.2010.512320].
Google Scholar
Liu W., Wen J., Chao J., Yin W., Shen C., Lai D., Lin C., Liu J., Sun H., Chen Q.: Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner. Atmospheric Environment 9/2012, 33–44, [DOI: 10.1016/j.atmosenv.2012.03.039].
Google Scholar
Long Z., Yao Q., Song Q., Li S.: Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector. Journal of Electrostatics 11/2010,835–-843, [DOI: 10.1016/j.elstat.2009.07.001].
Google Scholar
Long Z., Yao Q., Song Q., Li S.: A second-order accurate finite volume method for the computation of electrical conditions inside a wire-plate electrostatic precipitator on unstructured meshes. Journal of Electrostatics 7/2009, 597–604, [DOI: 10.1016/j.elstat.2008.12.006].
Google Scholar
Long Z., Yao Q.: Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. Journal of Aerosol science 7/2010, 702–718, [DOI: 10.1016/j.jaerosci.2010.04.005].
Google Scholar
Long Z., Yao Q.: Numerical simulation of the flow and the collection mechanism inside a scale hybrid particulate collector. Powder Technology 1/2012, 26–37, [DOI: 10.1016/j.powtec.2011.08.045].
Google Scholar
Lu Q., Yang Z., Zheng C., Li X., Zhao C.: Numerical simulation on the fine particle charging and transport behaviors in a wire-plate electrostatic precipitator. Advanced Powder Technology, 9/2016, 934–946, [DOI: 10.1016/j.apt.2016.06.021].
Google Scholar
Mangili A., Gendreau A.: Transmission of infectious diseases during commercial air travel. Lancet 3/2005, 989–996, [DOI:10.1016/S0140-6736(05)71089-8].
Google Scholar
Marlow W., Brock J.: Unipolar charging of small aerosol particles. Journal of Colloid and Interface Science 1/1975, 32–38, [DOI: 10.1016/0021-9797(75)90250-7].
Google Scholar
Neimarlija N., Demirdzic I., Muzaferija, S.: Finite volume method for calculation of electrostatic fields in electrostatic precipitators. Journal of Electrostatics 2/2009, 37–47, [DOI: 10.1016/j.elstat.2008.10.007].
Google Scholar
Niewulis A., Berendt A., Podlinski J., Mizeraczyk, J.: Electrohydrodynamic flow patterns and collection efficiency in narrow wire-cylinder type electrostatic precipitator. Journal of Electrostatics, 8/2013, 808–814, [DOI:10.1016/j.elstat.2013.02.002].
Google Scholar
Niewulis A., Podlinski J., Mizeraczyk, J.: Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode. Journal of Electrostatics, 5/2009, 123–127, [DOI:10.1016/j.elstat.2009.01.001].
Google Scholar
Park, S., Kim, S.: Effects of electrohydrodynamic flow and turbulent diffusion on collection efficiency of an electrostatic precipitator with cavity walls. Aerosol Science & Technology 1/2003, 574–586, [DOI:10.1080/02786820300928].
Google Scholar
Podlinski J., Dekowski J., Mizeraczyk J., Brocilo D., Chang J.: Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency. Journal of Electrostatics 3/2006, 259–262, [DOI: 10.1016/j.elstat.2005.06.006].
Google Scholar
Sattari P., Adamiak K., Castle, G.S.P.: Numerical simulation of Trichel pulses in a negative corona discharge in air. IEEE Transactions on Industry Applications 77/2011, 1935–1943, [DOI: 10.1109/TIA.2011.2156752].
Google Scholar
Schmid H., Stolz S., Buggish, H.: On the modeling of the electro–hydrodynamic flow fields in electrostatic precipitators. Flow, Turbulence and Combustion 1/2002, 63–89, [DOI:10.1023/A:1015666116174].
Google Scholar
Soldati A., Andreussi P., Banerjee S.: Direct simulation of turbulent particle transport in electrostatic precipitators. AIChE Journal 12/1993, 1910–1919, [DOI: 10.1002/aic.690391203].
Google Scholar
Soldati A., Casal M., Andreussi P., Banerjee, S.: Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. AIChE Journal 6/1997, 1403–1413, [DOI: 10.1002/aic.690430604].
Google Scholar
Soldati A.: Influence of large-scale streamwise vortical EHD flows on wall turbulence. International Journal of Heat and Fluid Flow 8/2002, 441–443, [DOI: 10.1016/S0142-727X(01)00154-0].
Google Scholar
Soldati A.: On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. Journal of Aerosol Scienc 3/2000, 293–305, [DOI: 10.1016/S0021-8502(99)00055-5].
Google Scholar
Tu Y., Song Q., Tu G., Yao. Q.: Experimental research on particulate collection performance by perforated plate in hybrid particulate collector. Proc. of the CSEE 6/2013, 51–56, [DOI: 0258-8013 (2013) 17-0051-06].
Google Scholar
Wen T., Krichtafovitch I., Mamishev, A.: Numerical study of electrostatic precipitators with novel particle-trapping mechanism. Journal of Aerosol science 5/2016, 95–103, [DOI: 10.1016/j.jaerosci.2016.02.001].
Google Scholar
Wu Z., Colbeck I., Zhang G.: Deposition of particles on a single cylinder by a Coulombic force and direct interception. Aerosol Science & Technology 11/1993, 40–50, [DOI: 10.1080/02786829308959619].
Google Scholar
Wu Z., Colbeck I., Zhang G.: The deposition of particles from an air flow on a single cylindrical fiber in a uniform electrical field. Aerosol Science & Technology 1/1999, 62–70, [DOI: 10.1080/027868299304886].
Google Scholar
Xing M., Guo B., Yu A.: Effect of electrohydrodynamic secondary flow on the particle collection in a wire-plate electrostatic precipitator. CSIRO, Melbourne-Australia, 10–12.
Google Scholar
Zhai Z., Zhang Z., Zhang W., Chen, Q.: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part-1: summary of prevent turbulence models. HVAC&R Research 11/2007, 853–870, [DOI:10.1080/10789669.2007.10391459].
Google Scholar
Zhang X., Wang L., Zhu, K: Particle tracking and particle-wall collision in a wire-plate electrostatic precipitator. Journal of Electrostatics 9/2005, 1057–1071, [DOI: 10.1016/j.elstat.2005.02.002].
Google Scholar
Zhang Z., Chen, Q.: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric Environment 8/2007, 5236–5248, [DOI: 10.1016/j.atmosenv.2006.05.086].
Google Scholar
Zhang Z., Zhang W., Zhai Z., Chen, Q.: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part-2: comparison with experimental data from literature. HVAC&R Research 11/2007, 871–886, [DOI:10.1080/10789669.2007.10391460].
Google Scholar
Zhao B., Chen C., Yang X., Lai, A: Comparison of three approaches to model particle penetration coefficient through a single straight crack in a building envelope. Aerosol Science & Technology 2/2010, 405–416, [DOI: 10.1080/02786821003689937].
Google Scholar
Zhao L., Adamiak K.: Effects of EHD and external air flows on electric corona discharge in point-plane/mesh configurations. IEEE Transactions on Industry Applications 2/2009, 16–21, [DOI: 10.1109/TIA.2008.2009389].
Google Scholar
Zhao L., Adamiak K.: EHD flow in air produced by electric corona discharge in pin–plate configuration. Journal of Electrostatics 3/2005, 337–350, [DOI: 10.1016/j.elstat.2004.06.003].
Google Scholar
Zhao L., Adamiak K.: Numerical simulation of the effect of EHD flow on corona discharge in compressed air. IEEE Transactions on Industry Applications 2/2013, 298–304, [DOI: 10.1109/TIA.2012.2228832].
Google Scholar
Zhao L., Adamiak K.: Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator. IEEE Transactions on Industry Applications 6/2008, 683–691, [DOI: 10.1109/TIA.2008.921453].
Google Scholar
Zouaghi A., Zouzou N., Mekhaldi A., Gouri R.: Submicron particles trajectory and collection efficiency in a miniature planar DBD-ESP: Theoretical model and experimental validation. Journal of Electrostatics 8/2016, 7–15, [DOI: 10.1016/j.elstat.2016.05.004].
Google Scholar
Authors
Feng Zhuangbofengzb@tju.edu.cn
Western University, Department of Electrical and Computer Engineering; Tianjin University, School of Environmental Science and Engineering China
Authors
Zhengwei LongTianjin University, School of Environmental Science and Engineering China
Authors
Kazimierz AdamiakWestern University, Department of Electrical and Computer Engineering Canada
Statistics
Abstract views: 329PDF downloads: 133
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.