THE IMPACT OF WINDOW FUNCTION ON IDENTIFICATION OF SPEAKER EMOTIONAL STATE
Article Sidebar
Open full text
Issue Vol. 7 No. 4 (2017)
-
SELECTED PROBLEMS OF EVALUATION AND CLASSIFICATION OF HISTORICAL BUILDINGS USING ROUGH SETS
Krzysztof Czajkowski5-10
-
LABORATORY STAND FOR SMALL WIND TURBINE SIMULATION
Wojciech Matelski, Eugeniusz Łowiec, Stanisław Abramik11-14
-
DEVELOPMENT OF AN AUTOMATED DIAGNOSTICS AND CONTROL SYSTEM FOR BIOGAS COMBUSTION PROCESSES
Oxana Zhirnova15-19
-
SUPPLY CHAIN RISK MANAGEMENT BY MONTE CARLO METHOD
Tomasz Rymarczyk, Grzegorz Kłosowski20-23
-
THE USE OF PETRI NETS IN DECISION SUPPORT SYSTEMS BASED ON INTELLIGENT MULTIPLY SOURCE DATA ANALYSIS
Tomasz Rymarczyk, Grzegorz Kłosowski, Tomasz Cieplak24-27
-
APPLICABILITY ANALYSIS OF REST AND SOAP WEB SERVICES
Tomasz Zientarski, Marek Miłosz, Marek Kamiński, Maciej Kołodziej28-31
-
A REVIEW OF CONTROL METHODS OF WIND TURBINE SYSTEMS WITH PERMANENT MAGNET SYNCHRONOUS GENERATOR
Piotr Gajewski32-37
-
DIRECT TORQUE CONTROL OF MULTI-PHASE INDUCTION MOTOR WITH FUZZY LOGIC SPEED CONTROLLER
Jacek Listwan38-43
-
IMAGE COMPLETION WITH LOW-RANK MODEL APPROXIMATION METHODS
Tomasz Sadowski, Rafał Zdunek44-48
-
APPROXIMATION OF ELECTRIC PROPERTIES OF PERIODIC LAYERED COMPOSITE MATERIALS
Adam Steckiewicz, Bogusław Butryło49-52
-
BOOST QUASI-RESONANT CONVERTERS FOR PHOTOVOLTAIC SYSTEM
Michał Harasimczuk53-56
-
RESEARCH OF FLOW AROUND SELECTED SENSORS PROFILES FOR METROLOGY FLOWS
Piotr Zgolak57-61
-
MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA
Tomasz Rojek62-65
-
ANALYSIS OF POWER LOSS IN THE LOW-SPEED PNEUMATIC ENGINE
Adam Ilnicki, Mariusz Rząsa66-69
-
APPLICATION OF FUZZY COGNITIVE MAP TO PREDICT OF EFFECTIVENESS OF BIKE SHARING SYSTEMS
Aleksander Jastriebow, Łukasz Kubuś, Katarzyna Poczęta70-73
-
FUZZY COGNITIVE MAP AS AN INTELLIGENT RECOMMENDER SYSTEM OF WEBSITE RESOURCES
Aleksander Jastriebow, Łukasz Kubuś, Katarzyna Poczęta74-78
-
MODELING OF THE ARTIFICIAL BLOOD CHAMBER AND THE MICROPUMPS PULSATILE DRIVE FOR BLOOD TRANSFUSION
Sebastian Bartel79-81
-
CONTROL A SMALL WIND TURBINE WITH ASYNCHRONOUS GENERATOR
Kamil Możdżyński, Tomasz Gajowik, Krzysztof Rafał, Mariusz Malinowski82-87
-
MECHANICAL PROPERTIES OF SELECTED EPOXY ADHESIVES
Izabela Miturska, Anna Rudawska88-91
-
POLYNOMIAL APPROXIMATION FOR T WAVE PARAMETER RECOGNITION IN ECG PROCESSING
Marcin Maciejewski92-95
-
THE IMPACT OF WINDOW FUNCTION ON IDENTIFICATION OF SPEAKER EMOTIONAL STATE
Paweł Powroźnik, Dariusz Czerwiński96-100
-
USE OF MULTICRITERIAL OPTIMIZATION IN FURNITURE MANUFACTURING PROCESS
Grzegorz Kłosowski, Edward Kozłowski101-106
-
MODEL OF DYNAMIC ELEVATOR CONTROL SYSTEM USING CENTRAL APPLICATION SERVER
Łukasz Furgała, Krzysztof Kolano, Włodzimierz Mosorow107-112
Archives
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
-
Vol. 8 No. 4
2018-12-16 16
-
Vol. 8 No. 3
2018-09-25 16
-
Vol. 8 No. 2
2018-05-30 18
-
Vol. 8 No. 1
2018-02-28 18
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
Main Article Content
DOI
Authors
Abstract
The article presents the impact of window function used for preparing the spectrogram, on Polish emotional speech identification.. In conducted researches the following window functions were used: Hamming, Gauss, Dolph–Chebyshev, Blackman, Nuttall, Blackman-Harris. The spectrogram processing method by artificial neural network (ANN) was also described in this article. Obtained results allowed to assess the effectiveness of identification process with the use of ANN. The average efficiency ranged from 70 % to more than 87%.
Keywords:
References
Berlin Database of Emotional Speech: http://www.expressive-speech.net/ (10.08.2014).
Bracewell R.: The Fourier Transform and its Application. Electric Engineering Series. McGraw-Hill International Editions. Singapore 2000.
Chena K.F., Lib Y.F.: Combining the Hanning windowed interpolated FFT in both directions. Computer Phisics Communication 178(12)/2008, 924–928.
Chmaj T., Lankosz M.: Akwizycja i przetwarzanie sygnałów cyfrowych. Politechnika Krakowska, Kraków 2011.
Database of Polish Emotional Speech: http://www.eletel.p.lodz.pl/bronakowski/med_catalog/ (10.08.2014).
Gałka J., Ziółko B.: Study of Performance Evaluation Methods for Non-Uniform Speech Segmentation, International of Circuits. Systems and Signal Processing. NAUN 2008.
Harris R, Fredric J.: On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proceedings of the IEEE 66(1)/1978, 51–83.
Heinzel, G., Rüdiger, A., Schilling R.: Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows (Technical report).Max Planck Institute (MPI) für Gravitationsphysik/Laser Interferometry & Gravitational Wave Astronomy.
Janicki A., Turkot M.: Rozpoznawanie stanu emocjonalnego mówcy z wykorzystaniem maszyny wektorów wspierających. KSTiT 2008, Bydgoszcz 2008.
Kamińska D., Pelikant A.: Zastosowanie multimedialnej klasyfikacji w rozpoznawaniu stanów emocjonalnych na podstawie mowy spontanicznej. IAPGOŚ 3/2012, 36–39.
Kim E.H., Hyu K.H., Kim S.H., Kwak Y.K.: Speech emotion recognition using eigen-FFT in clean and noisy environments. 16th IEEE International Conference on Robots and Human Interactive Communication, Jeju, Korea 2007.
Kłosiński R.: Materiały X Konferencji Naukowej SP 2014.
Konratowski E.: Czasowo-częstotliwościowa analiza drgań z wykorzystaniem metody overlapping. Logistyka 3/2014, 3104–3110.
Konratowski E.: Monitoring of the Multichannel Audio Signal, Computional collective intelligence. Technologies and Applications. Lecture Notes in Artifical Intelligence 6422, Springer Verlag, 298–306.
Krzyk P., Sułowicz M., Pragłowska–Ryłko N.: Zastosowanie IpDFT do diagnostyki silników asynchronicznych. Zeszyty Problemowe – Maszyny Elektryczne 3/2014, 293–300.
Lynch P.: The Dolph-Chebyshev window: A simple optimal filter. America Meteorological Society Journal of the Online 125/1997, 655–660.
Parsomphan S.: Use of Neural Network Classifier for Detecting Human Emotions via Speech Spectrogram. Procedings of the 3rd IIAE International Conference on Intelligence Systems and Image Processing. Japan 2015.
Pfitzinger H.R., Kaernbach C.: Amplitude and Amplitude Variation of Emotional Speech. Interspeech 2008, 1036–1039.
Powroźnik P., Czerwiński D: Effectiveness comparison on an artificial neural networks to identify Polish emotional speech. Przegląd Elektrotechniczny 07/2016, 45–48.
Powroźnik P.: Polish emotional speech recognition using artificial neural network. Advances is Science and Technology Research Journal 8(24)/2014, 24–27.
Ramakrishnan S.: Recognition of emotion from speech, A review. Speech Enhancement, Modeling and Recognition – Algorithms and Applications, March 2012.
Scherer K.: Vocal communication of emotions: A Review of Research Paradigms in Speech Communication 40/2003, 227–256.
Smith J. O.: Spectral Audio Signal Processing. W3K Publishing, 2011.
Thompson W. F., Balkwill L–L.: Decoding speech prosody in five languages. Semiotica 158/2006, 407–424.
Wicher A., Sęk A., Konieczny J.: Akustyczno-fonetyczne cechy mowy polskiej. Instytut Akustyki UAM Poznań, 2005.
Zieliński T. P., Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań. WKiŁ, Warszawa 2009.
Article Details
Abstract views: 262
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
