INFLUENCE OF MOBILE ROBOT CONTROL ALGORITHMS ON THE PROCESS OF AVOIDING OBSTACLES
Piotr Wójcicki
p.wojcicki@pollub.plLublin University of Technology, Institute of Computer Science (Poland)
http://orcid.org/0000-0002-0522-6223
Paweł Powroźnik
Lublin University of Technology, Institute of Computer Science (Poland)
http://orcid.org/0000-0002-5705-4785
Kamil Żyła
Lublin University of Technology, Institute of Computer Science (Poland)
http://orcid.org/0000-0002-6291-003X
Stanisław Grzegórski
Lublin University of Technology, Institute of Computer Science (Poland)
http://orcid.org/0000-0001-7640-6195
Abstract
This article presents algorithms for controlling a mobile robot. An algorithms are based on artificial neural network and fuzzy logic. Distance was measured with the use of ultrasonic sensor. The equipment applied as well as signal processing algorithms were characterized. Tests were carried out on a mobile wheeled robot. The analysis of the influence of algorithm while avoiding obstacles was made.
Keywords:
mobile robot, algorithms, collision avoidanceReferences
Adib A., Masoumi B.: Mobile robots navigation in unknown environments by using fuzzy logic and learning automata. Artificial Intelligence and Robotics (IRANOPEN), 2017, 58–63 [doi: 10.1109/RIOS.2017.7956444].
Google Scholar
Bajrami X., Dërmaku A., Demaku N., Maloku S., Kikaj A., Kokaj A.: Genetic and Fuzzy logic algorithms for robot path finding. 5th Mediterranean Conference on Embedded Computing (MECO), 2016, 195–199 [doi: 10.1109/MECO.2016.7525739].
Google Scholar
Boujelben M., Ayedi D., Rekik C., Derbel N.: Fuzzy logic controller for mobile robot navigation to avoid dynamic and static obstacles. 14th International Multi-Conference on Systems, Signals & Devices (SSD), 2017, 293–298 [doi: 10.1109/SSD.2017.8166963].
Google Scholar
Hammed A. A., Karlik B., Salman M. S.: Back-propagation algorithm with variable adaptive momentum. Knowledge-Based Systems 114, 2016, 79–87 [doi: 10.1016/j.knosys.2016.10.001].
Google Scholar
Handayani A. S., Dewi T., Husni N.L., Nurmaini S., Yani I.: Target tracking in mobile robot under uncertain environment using fuzzy logic controller. 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017, 1–5 [doi: 10.1109/EECSI.2017.8239079].
Google Scholar
He K., Sun H., Cheng W.: Application of fuzzy neural network based on T-S model for mobile robot to avoid obstacles. 7th World Congress on Intelligent Control and Automation, 2008, 8282–8285 [doi: 10.1007/978-3-540-88513-9_120].
Google Scholar
Khan S., Ahmmed M. K.: Where am I? Autonomous navigation system of a mobile robot in an unknown environment. 5th International Conference on Informatics, Electronics and Vision (ICIEV), 2016, 56–61 [doi: 10.1109/ICIEV.2016.7760188].
Google Scholar
Mazare A., Ionescu L., Lita A., Serban G., Ionut M.: Mobile system with real time route learning using Hardware Artificial Neural Network. 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2015, 45–48 [doi: 10.1109/ECAI.2015.7301250].
Google Scholar
McCulloch W., Pitts W.: A logical calculations of the ideas in nervous activity. Bulletin of Mathematical Biophisics 5, 1943, 115–133.
Google Scholar
Mohammad S. H. A., Jeffril M. A., Sariff N.: Mobile robot obstacle avoidance by using Fuzzy Logic technique. IEEE 3rd International Conference on System Engineering and Technology, 2013, 331–335 [doi: 10.1109/ICSEngT.2013.6650194].
Google Scholar
Panigrahi P.K., Ghosh S., Parhi D.R.: A novel intelligent mobile robot navigation technique for avoiding obstacles using RBF neural network. International Conference on Control, Instrumentation, Energy and Communication (CIEC), 2014, 1–6 [doi: 10.1109/CIEC.2014.6959038].
Google Scholar
Powroźnik P., Czerwiński D.: Effectiveness comparison on an artificial neural networks to identify Polish emotional speech. Przegląd Elektrotechniczny 07/2016, 45–48 [doi: 10.15199/48.2016.07.08].
Google Scholar
Stączek P.: Digital signal processing in ultrasonic based navigation system for mobile robots. ITM Web Conf. 15, 2017 [doi:10.1051/itmconf/20171505008].
Google Scholar
Tiwari S., Naresh R.: Comparative study of backpropagation algorithms in neural network based identification on power system, International Journal of Computer Science and Information Technology 5(4), 2013, 93–107 [doi: 10.5121/ijcsit.2013.5407].
Google Scholar
Wu T. F., Tsai P. S., Hu N. T., Chen J. Y.: Use of Ultrasonic Sensors to Enable Wheeled Mobile Robots to Avoid Obstacles. Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2014, 958–961 [doi: 10.1109/IIH-MSP.2014.240].
Google Scholar
Yong L., Yang F., Hui L., Si-Wen Z.: The Improved Training Algorithm of Back Propagation Neural Network with Selfadaptive Learning Rate, International Conference on Computational Intelligence and Natural Computing, 2009, 73–76 [doi:10.1109/CINC.2009.111].
Google Scholar
Authors
Piotr Wójcickip.wojcicki@pollub.pl
Lublin University of Technology, Institute of Computer Science Poland
http://orcid.org/0000-0002-0522-6223
Authors
Paweł PowroźnikLublin University of Technology, Institute of Computer Science Poland
http://orcid.org/0000-0002-5705-4785
Authors
Kamil ŻyłaLublin University of Technology, Institute of Computer Science Poland
http://orcid.org/0000-0002-6291-003X
Authors
Stanisław GrzegórskiLublin University of Technology, Institute of Computer Science Poland
http://orcid.org/0000-0001-7640-6195
Statistics
Abstract views: 296PDF downloads: 145
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Piotr Wójcicki, Tomasz Zientarski, APPLICATION OF THE LENNARD-JONES POTENTIAL IN MODELLING ROBOT MOTION , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 9 No. 4 (2019)
- Paweł Powroźnik, Dariusz Czerwiński, THE IMPACT OF WINDOW FUNCTION ON IDENTIFICATION OF SPEAKER EMOTIONAL STATE , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 4 (2017)
- Kamil Żyła, IMPLEMENTATION OF BASIC INTEGRATION METHODS IN APP INVENTOR ENVIRONMENT AND THEIR EFFICIENCY , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 5 No. 1 (2015)