INFLUENCE OF MOBILE ROBOT CONTROL ALGORITHMS ON THE PROCESS OF AVOIDING OBSTACLES


Abstract

This article presents algorithms for controlling a mobile robot. An algorithms are based on artificial neural network and fuzzy logic. Distance was measured with the use of ultrasonic sensor. The equipment applied as well as signal processing algorithms were characterized. Tests were carried out on a mobile wheeled robot. The analysis of the influence of algorithm while avoiding obstacles was made.


Keywords

mobile robot; algorithms; collision avoidance

Adib A., Masoumi B.: Mobile robots navigation in unknown environments by using fuzzy logic and learning automata. Artificial Intelligence and Robotics (IRANOPEN), 2017, 58–63 [doi: 10.1109/RIOS.2017.7956444].

Bajrami X., Dërmaku A., Demaku N., Maloku S., Kikaj A., Kokaj A.: Genetic and Fuzzy logic algorithms for robot path finding. 5th Mediterranean Conference on Embedded Computing (MECO), 2016, 195–199 [doi: 10.1109/MECO.2016.7525739].

Boujelben M., Ayedi D., Rekik C., Derbel N.: Fuzzy logic controller for mobile robot navigation to avoid dynamic and static obstacles. 14th International Multi-Conference on Systems, Signals & Devices (SSD), 2017, 293–298 [doi: 10.1109/SSD.2017.8166963].

Hammed A. A., Karlik B., Salman M. S.: Back-propagation algorithm with variable adaptive momentum. Knowledge-Based Systems 114, 2016, 79–87 [doi: 10.1016/j.knosys.2016.10.001].

Handayani A. S., Dewi T., Husni N.L., Nurmaini S., Yani I.: Target tracking in mobile robot under uncertain environment using fuzzy logic controller. 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017, 1–5 [doi: 10.1109/EECSI.2017.8239079].

He K., Sun H., Cheng W.: Application of fuzzy neural network based on T-S model for mobile robot to avoid obstacles. 7th World Congress on Intelligent Control and Automation, 2008, 8282–8285 [doi: 10.1007/978-3-540-88513-9_120].

Khan S., Ahmmed M. K.: Where am I? Autonomous navigation system of a mobile robot in an unknown environment. 5th International Conference on Informatics, Electronics and Vision (ICIEV), 2016, 56–61 [doi: 10.1109/ICIEV.2016.7760188].

Mazare A., Ionescu L., Lita A., Serban G., Ionut M.: Mobile system with real time route learning using Hardware Artificial Neural Network. 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2015, 45–48 [doi: 10.1109/ECAI.2015.7301250].

McCulloch W., Pitts W.: A logical calculations of the ideas in nervous activity. Bulletin of Mathematical Biophisics 5, 1943, 115–133.

Mohammad S. H. A., Jeffril M. A., Sariff N.: Mobile robot obstacle avoidance by using Fuzzy Logic technique. IEEE 3rd International Conference on System Engineering and Technology, 2013, 331–335 [doi: 10.1109/ICSEngT.2013.6650194].

Panigrahi P.K., Ghosh S., Parhi D.R.: A novel intelligent mobile robot navigation technique for avoiding obstacles using RBF neural network. International Conference on Control, Instrumentation, Energy and Communication (CIEC), 2014, 1–6 [doi: 10.1109/CIEC.2014.6959038].

Powroźnik P., Czerwiński D.: Effectiveness comparison on an artificial neural networks to identify Polish emotional speech. Przegląd Elektrotechniczny 07/2016, 45–48 [doi: 10.15199/48.2016.07.08].

Stączek P.: Digital signal processing in ultrasonic based navigation system for mobile robots. ITM Web Conf. 15, 2017 [doi:10.1051/itmconf/20171505008].

Tiwari S., Naresh R.: Comparative study of backpropagation algorithms in neural network based identification on power system, International Journal of Computer Science and Information Technology 5(4), 2013, 93–107 [doi: 10.5121/ijcsit.2013.5407].

Wu T. F., Tsai P. S., Hu N. T., Chen J. Y.: Use of Ultrasonic Sensors to Enable Wheeled Mobile Robots to Avoid Obstacles. Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2014, 958–961 [doi: 10.1109/IIH-MSP.2014.240].

Yong L., Yang F., Hui L., Si-Wen Z.: The Improved Training Algorithm of Back Propagation Neural Network with Selfadaptive Learning Rate, International Conference on Computational Intelligence and Natural Computing, 2009, 73–76 [doi:10.1109/CINC.2009.111].

Download


Wójcicki, P., Powroźnik, P., Żyła, K., & Grzegórski, S. (1). INFLUENCE OF MOBILE ROBOT CONTROL ALGORITHMS ON THE PROCESS OF AVOIDING OBSTACLES. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(4), 60-63. https://doi.org/10.5604/01.3001.0012.8041

Piotr Wójcicki  p.wojcicki@pollub.pl
Lublin University of Technology, Institute of Computer Science  Poland
http://orcid.org/0000-0002-0522-6223
Paweł Powroźnik 
Lublin University of Technology, Institute of Computer Science  Poland
http://orcid.org/0000-0002-5705-4785
Kamil Żyła 
Lublin University of Technology, Institute of Computer Science  Poland
http://orcid.org/0000-0002-6291-003X
Stanisław Grzegórski 
Lublin University of Technology, Institute of Computer Science  Poland
http://orcid.org/0000-0001-7640-6195