CONSTRUCTION AND VERIFICATION OF MATHEMATICAL MODEL OF MASS SPECTROMETRY DATA
Article Sidebar
Open full text
Issue Vol. 3 No. 1 (2013)
-
SPECIALIZED SYMBOLIC COMPUTATION FOR STEADY STATE PROBLEMS
Marcin Sowa5-8
-
CONSTRUCTION AND VERIFICATION OF MATHEMATICAL MODEL OF MASS SPECTROMETRY DATA
Małgorzata Plechawska-Wójcik9-14
-
VISUALIZATION OF ANTENNA'S PARAMETERS SIMULATED WITH NEC-2
Bartosz Chaber15-18
-
IMPACT OF DIRICHLET BOUNDARY CONDITION ON CALCULATION RATE AND STABILITY DURING EDDY CURRENT MODELLING USING ELECTRIC SCALAR POTENTIAL
Przemysław Płonecki, Jacek Starzyński, Stanisław Wincenciak19-20
-
NOISE ANALYSIS OF THE RECORDING CHANNEL DEDICATED TO THE MULTICHANNEL INTEGRATED CIRCUITS FOR NEUROBIOLOGY EXPERIMENTS
Piotr Kmon, Piotr Otfinowski21-23
-
DISCRIMINATOR FOR TIMESTAMPING IN STRIP DETECTOR READOUT INTEGRATED CIRCUITS
Krzysztof Kasiński25-28
-
4 CHANNEL LED MODULE FOR USE IN GROW LIGHTING SYSTEM
Tomasz Cegielski29-33
-
AN INDUSTRIAL CAPACITANCE TOMOGRAPHY APPLICATION FOR TWO-PHASE FLOWS
Piotr Zaprawa35-38
-
ANALYSIS OF THE EFFECT OF CONCRETE BASE ROUGHNESS ON THE PULL-OFF ADHESION OF THE TOPPING LAYER
Łukasz Sadowski39-42
-
MICROBLOGGING APPLICATION-HANDSHAKE
Paweł Kowalczyk, Tomasz Słodyczka, Ewelina Smyk, Przemysław Sadura43-45
-
MODELING AND ANALYSIS OF MAGNETIC FIELD FOR UNTYPICAL COORDINATE SYSTEMS
Mikołaj Skowron47-48
Archives
-
Vol. 7 No. 4
2017-12-21 23
-
Vol. 7 No. 3
2017-09-30 24
-
Vol. 7 No. 2
2017-06-30 27
-
Vol. 7 No. 1
2017-03-03 33
-
Vol. 6 No. 4
2016-12-22 16
-
Vol. 6 No. 3
2016-08-08 18
-
Vol. 6 No. 2
2016-05-10 16
-
Vol. 6 No. 1
2016-02-04 16
-
Vol. 5 No. 4
2015-10-28 19
-
Vol. 5 No. 3
2015-09-02 17
-
Vol. 5 No. 2
2015-06-30 15
-
Vol. 5 No. 1
2015-03-31 18
-
Vol. 4 No. 4
2014-12-09 29
-
Vol. 4 No. 3
2014-09-26 22
-
Vol. 4 No. 2
2014-06-18 21
-
Vol. 4 No. 1
2014-03-12 19
-
Vol. 3 No. 4
2013-12-27 20
-
Vol. 3 No. 3
2013-07-24 13
-
Vol. 3 No. 2
2013-05-16 9
-
Vol. 3 No. 1
2013-02-14 11
Main Article Content
DOI
Authors
Abstract
The article presents issues concerning construction, adjustment and implementation of mass spectrometry mathematical model based on Gaussians and Mixture Models and the mean spectrum. This task is essential to the analysis and it needs specification of many parameters of the model.
Keywords:
References
Akaike H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control, 9 s.716–723, 1974. DOI: https://doi.org/10.1109/TAC.1974.1100705
Baggerly K.A., Morris J., Wang J., Gold D., Xiao L.C., Coombes K.R.: A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples. Proteomics, s. 1667–1672, 2003.
Banfield J., Raftery A.: Model-based Gaussian and non-Gaussian clustering. Biometrics, 49 s. 803–821, 1993. DOI: https://doi.org/10.2307/2532201
Boster B., Guyon I., Vapnik V.: A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory, s. 114– 152, 1992. DOI: https://doi.org/10.1145/130385.130401
Bozdogan H.: Choosing the number of component clusters in the mixturemodel using a new informational complexity criterion of the inverse-fisher informational matrix. Springer-Verlag,Heidelberg, 19 s. 40–54, 1993. DOI: https://doi.org/10.1007/978-3-642-50974-2_5
Bozdogan H.: On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models. Communications in Statictics, Theory and Methods, 19 s. 221–278, 1990. DOI: https://doi.org/10.1080/03610929008830199
Celeux G., Soromenho G.: An entropy criterion for assessing the number of clusters in a mixture model. Classification Journal, 13, s. 195–212, 1996. DOI: https://doi.org/10.1007/BF01246098
Clyde M.A., House L.L., Wolpert R.L.: Nonparametric models for proteomic peak identification and quatification. ISDS Discussion Paper, s. 2006–2007, 2006.
Coombes K., Baggerly K., Morris J.: Pre-processing mass spectrometry data, Fundamentals of Data Mining in Genomics and Proteomics, W Dubitzky, M Granzow, and D Berrar, eds. Kluwer, s. 79-99. 2007, Boston. DOI: https://doi.org/10.1007/978-0-387-47509-7_4
Coombes K.R., Koomen J.M., Baggerly K.A., Morris J., Kobayashi R.: Understanding the characteristics of mass spectrometry data through the use of simulation. Cancer Informatics, 1 s. 41–52, 2005. DOI: https://doi.org/10.1177/117693510500100103
Comon P.: Independent component analysis – a new concept? Signal Processing, 36 s. 287–314, 1994. DOI: https://doi.org/10.1016/0165-1684(94)90029-9
Dempster A.P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc., 39,1 s. 1-38, 1977. DOI: https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Du P., Kibbe W., Lin S.: Improved peak detection in mass spectrum by incorporating continous wavelet transform-based pattern matching. Genome analysis, 22 s. 2059-2065, 2006.
Dubitzky W., Granzow M., Berrar D.: Fundamentals of data mining in genomics and proteomics. Springer, Kluwer Boston, 2007. DOI: https://doi.org/10.1007/978-0-387-47509-7
Fung E.T., Enderwick C.: Proteinchip clinical proteomics: computational challenges and solutions. Biotechniques, Suppl., 32 s. 34–41, 2002. DOI: https://doi.org/10.2144/mar0205
Gyaourova A., Kamath C., Fodor I.K.: Undecimated wavelet transforms for image de-noising. Technical Report UCRL-ID-150931, Lawrence Livermore National Laboratory, Livermore, CA, 2002. DOI: https://doi.org/10.2172/15002085
Gentzel M., Kocher T., Ponnusamy S., Wilm M.: Preprocessing of tandem mass spectrometric data to support automatic protein identyfication. Proteomics, 3, s. 1597–1610, 2003.
Gras R., Muller M., Gasteiger E., Gay S., Binz P.A., Bienvenut W., Hoogland C., Sanchez J.C., Bairoch A., Hochstrasser D.F., Appel R.D.: Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis, 20 s. 3535-3550, 1999.
Jutten C., H´erault J.. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24 s. 1-10, 1991. DOI: https://doi.org/10.1016/0165-1684(91)90079-X
Lang M., Guo H., Odegard J.E., Burrus C.S., Well R.O.Jr.: Nonlinear processing of a shift invariant DWT for noise reduction. Proc. SPIE. Wavelet Applications II, 2491 s. 640-651, 1995.
Lang M., Guo H., Odegard J.E., Burrus C.S., Well R.O.Jr.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Processing Letters, 3 s. 10-12, 1996. DOI: https://doi.org/10.1109/97.475823
Lewandowicz A., Bakun M., Imiela J., Dadlez M.: Proteomika w uronefrologii - nowe perspektywy diagnostyki nieinwazyjnej? Nefrologia i dializoterapia polska, 1 s. 15–21, 2009.
Mantini D., Petrucci F., Pieragostino D., Del Boccio P., Di Nicola M., Di Ilio C., Federici G., Sacchetta P., Comani S., Urbani A.: Limpic: a computational method for the separation of protein signals from noise. BMC Bioinformatics, 8:101, 2007.
Mantini D., Petrucci F., Del Boccio P., Pieragostino D., Di Nicola M., Lugaresi A., Federici G., Sacchetta P., Di Ilio C., Urbani A.: Independent component analysis for the extraction of reliable protein signal profiles from Maldi-ToF mass spectra. Bioinformatics, 24 s.63 – 70, 2008. DOI: https://doi.org/10.1093/bioinformatics/btm533
McLachlan G.: Finite mixture models. John Wiley and Sons, 2001. DOI: https://doi.org/10.1002/0471721182
Morris J., Coombes K., Kooman J., Baggerly K., Kobayashi R..: Feature extraction and quantification for mass spectrometry data in biomedical applications using the mean spectrum. Bioinformatics, 21(9): 1764-1775. 2005. DOI: https://doi.org/10.1093/bioinformatics/bti254
Norris J., Cornett D., Mobley J., Anderson M., Seeley E., Chaurand P, Caprioli R.: Processing MALDI mass spectra to improve mass spectral direct tissue analysis. National institutes of health. 2007, USA. DOI: https://doi.org/10.1016/j.ijms.2006.10.005
Plechawska-Wójcik M.: Comprehensive analysis of mass spectrometry data – a case study. Foundations of Computing and Decision Sciences. Vol. 36 - No. 3-4, s. 275-292, 2011.
Plechawska M.: Comparing and similarity determining of gaussian distributions mixtures. Polish Journal of Environmental Studies, 17, No. 3B s. 341–346, 2008.
Polanska J., Plechawska M.: Comparison of convergence criterions used in expectation-maximization algorithm. Symbiosis, 2008.
Randolph T., Mithcell B., McLerran D., Lampe P., Feng Z.: Quantifying peptide signal in maldi-tof mass spectrometry data. Molecular & Cellular Proteomics, 4 s. 1990–1999, 2005.
Schwarz G.: Estimating the dimension of a model. Annals of Statistics, 6 s. 461–464, 1978. DOI: https://doi.org/10.1214/aos/1176344136
Tibshirani R., Hastiey T., Narasimhanz B., Soltys S., Shi G., Koong A., Le Q.T.: Sample classification from protein mass spectrometry, by ’peak probability contrasts’. Bioinformatics, 20 s. 3034 – 3044, 2004.
Tversky A., Hutchinson J.W.: Nearest neighbor analysis of psychological spaces. Psychological review, 93(1) s. 3–22, 1993. DOI: https://doi.org/10.1037/0033-295X.93.1.3
Vapnik V.N.: The Nature of Statistical Learning Theory. Springer, 1995. DOI: https://doi.org/10.1007/978-1-4757-2440-0
Vapnik V.N.: Statistical Learning Theory. Wiley, 1998.
Windham M.P. Cutler A.: Information ratios for validating cluster analyses. Journal of the American Statistical Association, 87 s. 1188–1192, 1993. DOI: https://doi.org/10.1080/01621459.1992.10476277
Wold H.: Estimation of principal components and related models by iterative least squares. Multivariate Analysis, s. 391–420, 1966.
Yasui Y., Pepe M., Thompson M.L., Adam B.L., Wright G.L., Qu Y., Potter J.D., Winget M., Thornquist M., Feng Z.: A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics, 4 s. 449-463, 2003. DOI: https://doi.org/10.1093/biostatistics/4.3.449
Article Details
Abstract views: 277
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
