METHODS OF EEG ARTIFACTS ELIMINATION
Małgorzata Plechawska-Wójcik
m.plechawska@pollub.plPolitechnika Lubelska, Instytut Informatyki (Poland)
Abstract
Registration of electroencephalography signals (EEG) is almost always associated with recording different kinds of artifacts that makes it difficult to read and analyze collected data. These artifacts may be noticeable in the individual channels, but very often they have to be adjusted over several channels simultaneously. Their origin can be varied. Among the most typical are network and hardware artifacts as well as several types of muscle artifacts, derived from the tested person. In recent years increased interest in EEG studies might be noticed. EEG signals are applied not only in the outpatient and clinical applications, but also in psychological analyses and in construction of modern human-machine interfaces. This article presents a case study of classification analysis application in EEG artifact correction tasks.
Keywords:
electroencephalogram, electroencephalography measurement, noise measurement, EEG artifactsReferences
Barbati G., Porcaro C., Zappasodi F., Rossini P.M., Tecchio F.: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals, Clin. Neurophysiol, 115, 2004, 1220–1232.
Google Scholar
Barlow JS.: Artifact processing (rejection and minimization) in EEG data processing. In: Lopes da Silva FH, Storm van Leeuwan W, Remond A, editors. Handbook of electroencephalography and clinical neurophysiology. Revised series 1986; vol. 2. Amsterdam: Elsevier; 1986, 15–62.
Google Scholar
Belouchrani A., Abed-Meraim K., Cardoso J., Moulines E.: A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing 45 (2), 1997, 434–444.
Google Scholar
Berg P., Scherg M.: A multiple source approach to the correction of eye artifacts. Electroencephalogr. Clin.Neurophysiol. 90, 1994, 229–241.
Google Scholar
Blinowska K., Kamiński M.: Multivariate Signal Analysis by Parametric Models. Handbook of Time Series Analysis. Björn Schelter, Matthias Winterhalder, Jens Timmer, WILEY-VCH Verlag GmbH & Co. KGaA, 2006, Weinheim.
Google Scholar
Cichocki A., Amari S.: Adaptive Blind Signal and Image Processing Learning Algorithms and Applications, John Wiley & Sons, New York, USA, 2002.
Google Scholar
Croft R.J., Barry R.J.: Removal of ocular artifact from the EEG: a review, Neuro physiol. Clin. 30, 2000, 5–19.
Google Scholar
Croft R.J., Barry R.J.: EOG correction: a new perspective, Electroencephalogr. Clin. Neurophysiol.107, 1998, 387–394.
Google Scholar
De Clercq W., Vergult A., Vanrumste B., Van Paesschen W., Van Huffel S.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng 2006, 53:2583–7.
Google Scholar
Delorme A., Sejnowski T., Makeig S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage 34, 2007, 1443–1449.
Google Scholar
Fatourechi M., Bashashati A., Ward RK., Birch GE.: EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol, 2007; 118:480–94.
Google Scholar
Frank R.M., Frishkoff G.A.: Automated protocol for evaluation of electromagnetic component separation (APECS): application of a framework for evaluating statistical methods of blink extraction from multichannel EEG, Clin. Neurophysiol. 118, 2007, 80–97.
Google Scholar
Goncharova II., McFarland DJ., Vaughan TM., Wolpaw JR.: EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 2003; 114:1580–93.
Google Scholar
Greco A., Mammone N., Morabito F., Versaci M.: Kurtosis, Renyi’s entropy and independent component scalp maps for the automatic artifact rejection from EEG data, International Journal of Signal Processing 2 (4), 2006, 240–244.
Google Scholar
James C., Gibson O.: Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis, IEEE Transactions on Biomedical Engineering 50 (9), 2003, 1108–1116.
Google Scholar
Jervis B.W., Coelho M., Morgan G.W.: Effect on EEG responses of removing ocular artefacts byproportional EOG subtraction, Med. Biol. Eng. Comput 27, 1989, 484–490.
Google Scholar
Joyce C.A., Gorodnitsky I.F., Kutas M.: Automatic removal of eye movement and blink artifacts from EEG data using blind components eparation, Psychophysiology 41, 2004, 313–325.
Google Scholar
Jung TP., Humphries C., Lee T, Makeig S., McKeown M.J., Iragui V., Sejnowski T.J.: Extended ICA removes artifacts from electroencephalographic recordings, Adv. NeuralInform. Process. Syst. 10, 1998, 894–900.
Google Scholar
Jung TP., Makeig S., Humphries C., Lee TW., McKeown MJ., Iragui V., et al.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37:163–78.
Google Scholar
Kierkels J., van Boxtel G., Vogten L.: A model-based objective evaluation of eye movement correction in EEG recordings, IEEE Transactions on Biomedical Engineering 53 (2), 2006, 246–253.
Google Scholar
Klemm M., Haueisen J., Ivanova G.: Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity, Medical & Biological Engineering & Computing 47, 2009, 413–423.
Google Scholar
Lei X., Yang P., Yao D.: An empirical Bayesian framework for brain–computer interfaces, IEEETrans.NeuralSyst.Rehabil.Eng.17, 2009, 521–529.
Google Scholar
LeVan P., Urrestarazu E., Gotman J.: A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification, Clinical Neurophysiology 117 (4), 2006, 912–927.
Google Scholar
Li Y., Ma Z., Lu W., Li Y.: Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach, Physiological Measurement, 27 (4), 2006, 425.
Google Scholar
Liu T., Yao D.: Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing,Comput.MethodsProgr.Biomed. 83, 2006, 95–103.
Google Scholar
Ma J., Bayram S., Tao P., Svetnik V.: High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection. J. Neurosci. Meth. 2011, 196:131–40.
Google Scholar
Ma J., Tao P.,, Bayram S., Svetnik, V.: Muscle artifacts in multichannel EEG: Characteristics and reduction. Clinical Neurophysiology 123, 2012, 1676–1686.
Google Scholar
Makeig S., Bell AJ., Jung TP., Sejnowski TJ.: Independent component analysis of electroencephalographic data. In: Advances in neural information processing systems. Cambridge, Mass: MIT Press 1996, 8:145–51.
Google Scholar
Melissant C., Ypma A., Frietman E., Stam C.: A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements, Artificial Intelligence in Medicine 33 (3), 2005, 209–222.
Google Scholar
Nicolaou N., Nasuto S.: Automatic artefact removal from event-related potentials via clustering, Journal of VLSI Signal Processing 48 (1), 2007, 173–183.
Google Scholar
Qin Y., Xu P., Yao D.: A comparative study of different references for EEG default mode network: the use of the infinity reference, Clin. Neurophysiol. 121, 2010, 1981–1991.
Google Scholar
Romero S., Mananas M., Barbanoj M.: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case, Computers in Biology and Medicine 38 (3), 2008, 348–360.
Google Scholar
Shao S., Shen K., Ong C., Wilder-Smith E., Li X.: Automatic EEG artifact removal: a weighted support-vector-machine approach with error correction, IEEE Transactions on Biomedical Engineering 56 (2), 2009, 336–344.
Google Scholar
Ting K., Fung P., Chang C., Chan F.: Automatic correction of artifact from singletrial event-related potentials by blind source separation using second order statistics only, Medical Engineering and Physics 28 (8), 2006, 780–794.
Google Scholar
Urrestarazu E., Iriarte J., Alegre M., Valencia M., Viteri C., Artieda J.: Independent component analysis removing artifacts in ictal recordings. Epilepsia 2004, 45:1071–8.
Google Scholar
Vázquez R., Vélez-Péreza, H., Rantab R., Dorr V., Maquin D., Maillard L.: Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomedical Signal Processing and Control 7, 2012, 389–400
Google Scholar
Vigario R.N.: Extraction of ocular artefacts from EEG using independent component analysis, Electroencephalogr.Clin.Neurophysiol.103, 1997, 395–404.
Google Scholar
Wallstrom G., Kass R., Miller A., Cohn J., Fox N.: Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods, International Journal of Psychophysiology 53 (2), 2004, 105–119.
Google Scholar
Wang Z., Peng X., TieJun L., Yin T., Xu L., DeZhong Y.: Robust removal of ocular artifacts by combining Independent Component Analysis and system identification. Biomedical Signal Processing and Control,10, 2014, 250–259.
Google Scholar
Żygierewicz J., Malinowska U., Suffczyński P., Piotrowski T., Durka P.: Event-related desynchronization and synchronization in evoked K-complexes. Acta Neurobiologiae Experimentalis, 69, 2009, 254-261.
Google Scholar
Żygierewicz J., Mazurkiewicz J., Durka P., Franaszczuk P., Crone N.: Estimation of short-time cross-correlation between frequency bands of event related EEG. Journal Of Neuroscience Methods, 157, 2, 2006, 294-302.
Google Scholar
Authors
Małgorzata Plechawska-Wójcikm.plechawska@pollub.pl
Politechnika Lubelska, Instytut Informatyki Poland
Statistics
Abstract views: 200PDF downloads: 98
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Most read articles by the same author(s)
- Małgorzata Plechawska-Wójcik, Kinga Wesołowska, Martyna Wawrzyk, Monika Kaczorowska, Mikhail Tokovarov, ANALYSIS OF APPLIED REFERENCE LEADS INFLUENCE ON AN EEG SPECTRUM , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 7 No. 2 (2017)
- Małgorzata Plechawska-Wójcik, CONSTRUCTION AND VERIFICATION OF MATHEMATICAL MODEL OF MASS SPECTROMETRY DATA , Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska: Vol. 3 No. 1 (2013)